跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/08 23:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉富隆
研究生(外文):Fu-lung Yeh
論文名稱:斑馬魚發育過程中熱休克蛋白HSP70自發性表現機制之研究
論文名稱(外文):Studies on the Mechanism of Spontaneous Expression of Heat Shock Protein HSP70 in Developing Zebrafish (Danio rerio)
指導教授:許濤許濤引用關係
指導教授(外文):Todd Hsu
學位類別:博士
校院名稱:國立海洋大學
系所名稱:水產生物技術研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:自發性表現機制熱休克蛋白70斑馬魚發育中
外文關鍵詞:spontaneous expressionHSP70zebrafishdevelopment
相關次數:
  • 被引用被引用:2
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熱休克蛋白為一群可受熱,重金屬或其它化學物質所誘發之緊迫蛋白。某些熱休克蛋白如分子量70,000之熱休克蛋白HSP70, 已知可協助變性之蛋白回復其結構,因此被稱為分子保護者, 也有一些HSP70是在正常狀態下產生,稱為HSC70。本實驗發現斑馬魚胚胎在受精後80至84小時 之幼魚階段,會自發性地表現大量HSP70,其表現量經由統計分析是12小時胚胎表現量的6至8倍,至108小時則與12小時胚胎中表現量相近,所以此自發性HSP70表現是一種暫時性的現象。西方墨點法實驗發現,熱休克轉錄因子 (HSF1) 在72到96小時幼魚中的表現量和自發性HSP70的表現似乎有相關性,但由super gel shift的實驗發現,抗HSF1的抗体只會結合在熱處理過的80小時斑馬魚抽取液與HSE (Heat Shock Element) 所形成之複合体上,而不會結合在正常斑馬魚抽取液所形成HSE複合体上,故自發性HSP70表現應非由HSF1所活化。北方墨點法實驗發現12小時至108小時的hsp70 mRNA表現量均類似,再藉設計hsc70與hsp70基因專一引子進行半定量RT-PCR分析hsc70和hsp70 mRNA之含量,發現hsc70 mRNA在12至108小時的表現量一致,而hsp70 mRNA表現量很低,但在熱處理過的情況下,hsp70 mRNA之含量加速增高,因此證實hsc70和hsp70 mRNA在斑馬魚各階段之含量都非常接近,但hsp70 mRNA含量遠低於hsc70,故正常斑馬魚之自發性表現HSP70,應非熱休克產生的HSP70。熱休克處理會使hsp70 mRNA含量大量上升,但只能使hsc70 mRNA微幅上升,顯示所使用PCR引子具有基因專一性。 因為熱休克可同時引起HSP70在蛋白質及mRNA層次上同步上升,但自發性HSP70蛋白上升時,其mRNA並未同步上升,表示自發性和熱休克之調節機制是不同的。由体外轉譯實驗發現免子紅血球破碎液可順利將熱處理過之斑馬魚hsp70 mRNA轉譯成帶有[35S]-Methionine之HSP70,但是12至108小時正常斑馬魚中hsc70 mRNA 被轉譯能力無法以此實驗來評估。為探討hsc70 mRNA之結構是否會隨發育而不同,本論文對hsc70 mRNA的序列設計了5段引子,第1段是forward primer,其它4段是針對mRNA 3’端中不同位置的reverse primers,由半定量RT-PCR的分析發現36小時斑馬魚的hsc70 mRNA在stop codon後之3’-UTR的長度明顯地比84小時的斑馬魚短。影像分析顯示,36小時斑馬魚hsc70 mRNA大約是84小時斑馬魚hsc70 mRNA之25~30%。由此說明了不同時期斑馬魚之3’端hsc70 mRNA的結構是有明顯差異,因此可能造成36小時的斑馬魚hsc70 mRNA的轉譯能力較84小時為差。另外,本論文也想了解自發性HSP70是否作為分子保護者,故利用EGS蛋白質次單元共價鍵結葯劑處理84小時斑馬魚的蛋白抽出液。再以西方墨點法分析,發現除了HSP70外,還有三個蛋白質複合物存在,一個分子約在75 kDa,另外二個大於250 kDa,並且以不同的EGS濃度和作用時間和不同的cross-link葯劑如DSS和glutaraldehyde也得到相同的結果,所以證實了自發性HSP70在84小時斑馬魚中和某些蛋白有緊密關聯。已有文獻指出共同分子保護 (cochaperone) dj2會和HSC70先進行交互作用,再幫助HSC70和其它的蛋白質結合,西方墨點法和北方墨點發現斑馬魚的dj2的表現機制如同自發性HSP70在84小時的斑馬魚中蛋白表現量最高,而dj2 mRNA的量在不同時期表現量類似。從蛋白質cross-link實驗也發現將84小時斑馬魚萃取液以EGS進行蛋白質交錯實驗,發現dj2也存在於蛋白質複合体中,而且它產生出現交錯性複合本的型態與自發性HSP70交錯複合体非常相似,所以本實驗發現自發性HSP70大量表現非類似由熱休克因子轉錄調節作用,而是可能在RNA層級,因斑馬魚分化使之3’端結構不同,而影響HSP70蛋白之表現,並且所表現之自發性HSP70可能作為其它蛋白質分子保護者。
Heat shock proteins (HSPs) with different molecular weights are rapidly synthesized within stressed cells after exposure to environmental stresssors. Among the stress-inducible HSPs, the members of HSP70 function as a molecular chaperone. Besides the stress-inducilbe HSP70, a form of HSP70 called heat shock cognate protein 70 (HSC70), which is constitutively expressed in unstressed cells under physiological conditions. A spontaneous high expression of heat shock protein 70 (HSP70) was detected in zebrafish (Danio rerio) at early larval stage (80-84 hr after fertilization), but HSP70 level was either low or barely detectable in 12, 24, 36, 60, and 108-hr-old zebrafish. The level of HSP70 in 84-hr-old larvae was estimated to be 6 to 8-fold that of 12-hr-old embryos. The spontaneous HSP70 expression was a transient process, as the level of HSP70 in 108-hr-old larvae dropped to that in 12-hr-old embryos. Although the transient increase of a 62-kDa HSF1-like polypeptide in 72 to 96-hr-old larvae seemed to correlate with the onset of the spontaneous HSP70 production, an anti-HSF1 antibody cocktail supershifted the stress-induced heat shock element (HSE) binding complex but not the unstressed zebrafish extracts, indicating that the spontaneous HSP70 expression was not triggered by a HSF1-like factor. Northern blot analysis indicated no apparent change in total hsp70 mRNA expression in zebrafish at different stages. Using gene-specific primers, quantitative RT-PCR analysis provided supporting evidence that normal zebrafish at all stages had barely detectable levels of stress-dependent hsp70 mRNA and these zebrafish expressed similar levels of hsc70 mRNA after normalization against b-actin expression, thus excluding the possible involvement of stress-related hsp70 mRNA in producing the spontaneously expressed HSP70. Because no increase in hsc70 or hsp70 mRNA accumulation could be detected in 80-and 84-hr-old larvae, the spontaneous high expression of HSP70 appears to be controlled by a mechanism different from that regulates the expression of stress-inducible HSP70. The mRNAs from heat-treated zebrafish were successfully translated in rabbit reticulocytes in the presence of [35S]-methionine including the stress-inducible HSP70, whether hsc70 mRNA from 36 to 108-hr-old zebrafish had different translatability was not revealed by this in vitro translation assay. In order to examine if the spontaneous HSP70 expression was regulated by the variation in hsc70 mRNA in zebrafish at different developmental stages, five gene specific primers targeting different positions of the 3’ end of hsc70 mRNA were designed. Gene-specific semi-quantitative RT-PCR showed that the level of hsc70 mRNA containing 3’-UTR downstream of the stop codon was 25 to 30% of that in 84-hr-old larvae. No variation in the 3’-end structure of hsc70 mRNA was found between 80 and 84-hr-old larvae. To determine if the spontaneously expressed HSP70 acted as a chaperone during zebrafish development, the extracts of 84-hr-old zebrafish were crosslinke with different kinds of cross-linking agents including EGS, DSS and glutaraldehyde. Three crosslinked complexes containing HSP70 with molecular weights estimated to be 75 kDa, 280 kDa and 300 kDa, respectively, detected by Western blot analysis. When the crosslinked complexes were probed with the anti-dj2 antibody, the cochaperone dj2 the zebrafish dj2-like factor was also present in the 300-kDa complex. Moreover, the expression of dj2-like factor in developing zebrafish seemed to be regulated by a mechanism similar to that controlling the spontaneous HSP70 expression, since similar levels of dj2 mRNA was detected in 12 to 108-hr-old zebrafish by Northern blot analysis when a high expression of dj2-like factor was found in 80 to 84-hr-old zebrafish. To sum up, the spontaneously expressed HSP70 in 80 to 84-hr-old zebrafish should be controlled at the translational level, possibly related to the variation in the 3’-end structure of hsc70 mRNA. The spontaneously expressed HSP70 might bind the cochaperone dj2 in developing zebrafish to act as a molecular chaperone.
CONTENTS
page
CONTENTS I
LIST OF TABLES AND FIGURES IV
ABBREVIATION LIST 0
中文摘要 1
ABSTRACT 4
CHAPTER I. INTRODUCTION 7
1. Conditions that result in the induction of heat shock gene expression in eukaryotes 7
3. Functions of stress proteins 10
4. Hsp expression and regulation 13
5. Interactions of vertebrate HSC70 and HSP70 with unfolded proteins and peptides 15
5-1. The ATPase activity of HSP70s 15
5-2. The interaction between HSC70 and DnaJ 16
5-3. Cochaperones-Hip, Hap46, HspBP1, p16 18
5-4. Cochaperones-Hop/p60, CHIP 19
6. Spontaneous expression of HSP/HSC70 20
7. The objectives of this research 22
CHAPTER II. MATERIALS AND METHODS 23
1. Collection of developing zebrafish 23
2. Preparation of zebrafish extracts 25
3. Western blot analysis 26
4. Gel shift assay and supershift assay 27
5. Alignment of zebrafish hsc70 and hsp70 cDNA sequences and their corresponding amino acid sequences 28
6. DNA probes for Northern hybridization 29
7. Northern blot analysis 30
8. Semi-quantitative RT-PCR analysis 31
9. In Vitro translation assay 33
10. Two-dimensional polyacrylamide gel electrophoresis 33
11. Protein cross-linking analysis 34
CHAPTER III. RESULTS 35
1. Spontaneous and heat-induced HSP70 expression in developing zebrafish 35
2. The Presence of HSE-binding Factors in Zebrafish 37
3. HSF1-independent binding of unstressed zebrafish extracts to HSE boxes 38
4. Hsp70 gene expression in unstressed and heat-stressed zebrafish examined by Northern blot analysis 39
5. Determination of optimal condition for semi-quantitative RT-PCR 40
6. Analysis of the nature of the spontaneously expressed hsp70 mRNA by gene specific RT-PCR 40
7. Noncoordinate expression of HSP70 and hsp70 mRNA in developing zebrafish 41
8. Analysis of the translatability of mRNAs contained in 36 to 108-hr-old zebrafish by in vitro translation 42
9. Variation in the 3’-end structure of hsc70 mRNA contained in 36, 80 and 84-hr-old zebrafish analyzed by RT-PCR 43
10. Coordinate expression of HSP70 and dj2 and their corresponding mRNAs in developing zebrafish 44
11. Analysis of the crosslinked HSP70 protein complexes in developing zebrafish 45
12. Two-dimensional protein electrophoresis and Western blot analysis of the crosslinked HSP70 46
13. SDS-PAGE analysis of the proteins crosslinked to zebrafish HSP70 by hydroxylamine cleavage 47
CHAPTER IV. DISCUSSION 48
CHAPTER V. CONCLUSIONS 58
FIGURES AND TABLES 59
LITERATURE CITED 91
Abravaya K, Phillips B, and Morimoto I. 1991. Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promotor examined by in vivo footprinting. Mol Cell Biol 11: 586-592.
Andres DA, Shao H, Crick DC, and Finlin BS. Expression cloning of a novel farnesylated protein, RDJ2, encoding a DnaJ protein homologue. Arch Biochem Biophys 346: 113-24.
Baler B, Dahl G and Voellmy R. 1993. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 13: 2486-2496.
Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, and Patterson C. 1999. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19: 4535-4545.
Bardelli A, Longati P, Albero D, Goruppi S, Schneider C, Ponzetto C and Comoglio PM. 1996. HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO J 15: 6205-6212.
Becker J, Walter W, Yan W, and Craig EA. 1996. Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol Cell Biol 16: 4378-4386.
Beissinger M and Buchner J. 1998. How chaperones fold proteins. Biol Chem 379: 245-259.
Bensaude O, Babinet C, Morange M, and Jacob F. 1983. Heat shock proteins, first major products of zygotic gene activity in mouse embryos. Nature 305: 331-333.
Bevilacqua A, Kinnunen LH, Bevilacqua S, and Mangia F. 1995. Stage- specific regulation of murine Hsp68 gene promotor in pre- implantation mouse embryos. Dev Biol 170: 467-478.
Bhattacharyya T, Karnezis AN, Murphy SP, Hoang H, Freeman BC, Phillips B, and Morimoto RI. 1995. Cloning and subcellular localization of human mitochondrial hsp70. J Biol Chem 270: 1705-1710.
Bienz M and Gurdon JB. 1982. The heat shock response in Xenopus oocytes is controlled at the translational level. Cell 29: 811-819.
Bimston D, Song J, Winchester D, Takayama S, Reed JC, and Morimoto RJ. 1998. BAG-1, a negative regulator of Hsp70 chaperone activity, uncouples nucleotide hydrolysis from substrate release. EMBO J 17: 6871-6878.
Bole DG, Hendershot LM, and Kearney JF. 1986. Posttranslational association of immunoglobin heavy chains in nonsecreting and secreting hybridomas. J Cell Biol 102: 1588-1566.
Bonato MC, Silva AM, Gomes SL, Maia JC, and Juliani MH. 1987. Differential expression of heat-shock proteins and spontaneous synthesis of HSP70 during the life cycle of Blastocladiella emersooni. Eur J Biochem 163: 211-220.
Boucher N, Wu Y, Dumas C, Dube M, Sereno D, Breton M, and Papadopoulou B. 2002. A common mechanism of stage-regulated gene expression in Leishmania mediated by a conserved 3''-untranslated region element. J Biol Chem 277: 19511-20.
Bradford MM. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248- 254.
Bruce BD and Churchich J. 1997. Characterization of the molecular-
Chaperone function of the heat-shcok-cognate-70-interacting protein. Eur J Biochem 245: 738-744.
Chappell TG, Konfort BB, Schimid SL, and Rothman JE. 1987.The ATPase core of a clathrin uncoating protein. J Biol Chem 262: 746-751
Chellaiah A, Davis A, and Mohanakumar T. 1993. Cloning of a unique human homologue of the Escherichia coli DNAJ heat shock protein. Biochim Biophys Acta 1174: 111-3.
Chen CA and Shyu AN. 1995. AU-rich elements: characterization and importance in mRNA degradation. TIBS 20: 465-470.
Chen S, Prapapanich V, Rimerman RA, Honore B, and Smith DF. 1996. Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins hsp90 and hsp70. Mol Endocrinol 10: 682-693.
Christians E, Michel E, Adenot P, Mezger V, Rallu M, Morange M, and Renard JP. 1997. Evidence for the involvement of mouse heat Shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation. Mol Cell Biol 17: 778-788.
Craig EA. 1985. The heat shock response. CRC Crit Rev Biochem 18: 239-280.
Craig EA, Gambill BD, and Nelson RJ. 1993. Heat shock proteins: Molecular chaperones of protein biogenesis. Microbiol Rev 57: 402-414.
Cyr DM, Langer T, and Douglas MG. 1994. DnaJ-like proteins: Molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 19: 176-181.
Decker CJ and Parker R. 1995. Diversity of cytoplasmic functions for the 3'' untranslated region of eukaryotic transcripts. Curr Opin Cell Biol 7: 386-392.
Edwards MC, Liegeois N, Horecka J, DePinho RA, Sprague Jr GF, Tyers M and SJ Elledge. 1997. Human CPR (cell cycle progression restoration) genes impart a Far- phenotype on yeast cells. Genetics 147: 1063-1076.
Flaherty KM, DeLuca-Flaherty C, and McKay DB. 1990. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346: 623-628.
Flynn GC, Chappell TC, and Rothman JE. 1989. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245: 385-390.
Gebauer M, Zeiner M, and Gehring U. 1997. Proteins interacting with the molecular chaperone hsp70/hsc70: physical associations and effects on refolding activity. FEBS Lett 417: 109-113.
Gebauer M, Zeiner M, and Gehring U. 1998. Interference between proteins Hap46 and Hop/p60, which bind to different domains of the molecular chaperone hsp70/hsc70. Mol Cell Biol 18: 6238-6244.
Georgopoulos C. 1992. The emergence of the chaperone machines. Trends Biochem Sci 17: 295-299.
Gething MJ and Sambrook J. 1992. Protein folding in the cell. Nature 355: 33-45.
Graser RT, Malnar-Dragojevc D, and Vincek V. 1996. Cloning and Characterization of a 70-kD heat shock cognate (hsc 70) gene From the zebrafish (Danio rerio). Genetica 98: 273-276.
Gulow K, Bienert D, and Haas IG. 2002. BiP is feed-back regulated by control of protein translation efficiency. J Cell Sci 115: 2443-52.
Haas IG, and Wabl M. 1983. Immunoglobin heavy chain binding protein. Nature 306: 387-389.
Hanson RJ, Sun J, Willis DG, and Marzluff WF. 1996. Efficient extraction and partial purification of the polyribosome-associated stem-loop binding protein bound to the 3'' end of histone mRNA. Biochemistry 35: 2146-2156.
Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F, and Kuriyan J. 1997. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276: 431-435.
Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571-579.
Hendrick JP, Langer T, Davis TA, and Hartl FU. 1993. Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc Natl Acad Sci USA 90: 10216-10220.
Hightower LE. 1980. Cultured animal cells exposed to amino acid analogues or purmomycin rapidly synthesize several polypeptides. J Cell Physiol 102: 407-427.
Hightower LE. 1991. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66: 191-197.
Hohfeld J, Minami Y, and Hartl FU. 1995. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83: 589-598.
Hu SM and Wang C. 1996. Involvement of the 10-kDa C-terminal fragment of hsc70 in complexing with unfolded protein. Arch Biochem Biophys 342: 163-169.
Huang S, Tsai MY, Tzou YM, Wu W, and Wang C. 1993. Aspartyl residue 10 is essential for ATPase activity of rat hsc70. J Biol Chem 268: 2063-2068.
Jackson RJ. 1993. Cytoplasmic regulation of mRNA function: the importance of the 3'' untranslated region. Cell 74: 9-14.
Johnson BD, Schumacher RJ, Ross ED and Toft DO. 1998. Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273: 3679-3686.
Kazutoyo T and Masataka M. 2000. Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of hsc70. J Biol Chem 275: 24728-24734.
Keller W. 1995. No end yet to messenger RNA 3'' processing!. Cell 81: 829-832.
Kelly GM and Reversade B. 1998. Characterization of a cDNA encoding a novel band 4.1-like protein in zebrafish. Biochem. Cell Biol. 75: 623-32
Kevil CG, Walsh L, Laroux FS, Kalogeris T, Grisham MB, and Alexander JS. 1997. An improved,rapid northern protocol. Biochem Bio-Phys Res Commun 238: 277-279.
Kiang JG and Tsokos GC. 1998. Heat shock protein 70 kDa: Molecular Biology, Biochemistry, and Physiology. Pharmacol Ther 80: 183 -201.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, and Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev Dyn 203: 253-310.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227: 680-685.
Langer T, Lu C, Echols H, Flanagan J, Hayer MK, and Hartal FU. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356: 683-689.
Latchman DS. 1998. Stress proteins: an overview. The handbook of experimental pharmacology. (ed. D.S. Latchman et al., 1998). Volume 136, p1-7, Springer-Verlag Berlin Heidelberg 1999, Printed in Germany.
Leung SM and Hightower LE. 1997. A 16-kDa protein functions as a new regulatory protein for Hsc70 molecular chaperone and is identified as a member of the Nm23/nucleoside diphosphate kinase family. J Biol Chem 272: 2607-2614.
Levinson W, Oppermann H, and Jackson J. 1980. Transition series metals and sulfhydrl reagents induce the synthesis of four proteins in eukaryotic cells. Biochem Biophys Acta 606: 170-180.
Lindquist S. 1981. Regulation of protein synthesis during heat Shock. Nature 293: 311-314.
Lindquist S and Craig EA. 1988. The heat shock protein. Annu Rev Genet 22: 631-677.
Liu FH, Wu SJ, Hu SM, Hsiao CD, and Wang C. 1999. Specific interaction of the 70-kDa heat shock cognate protein with the tetratricopeptide repeats. J Biol Chem 274: 34425-34432.
Marber MS, Latchman DS, Walker JM, and Yellon DM. 1993. Cardiac Stress protein elevation 24 hours after brief ischemia or Heat stress is associated with resistance to myocardial in-Fection. Circulation 88: 1264-1272.
Matthias M, Hartwig PS, Stefan R, Klaus P, Thomas L, and Bernd B. 2000. Multistep mechanism of substrate binding determines Chaperone activity of Hsp70. Nature Structur Biol 7: 586-593.
McCarthy JEG and Kollmus H. 1995. Cytoplasmic mRNA-protein interactions in eukaryotic gene expression. Trends Biochem Sci 20: 191-197.
Mezger V, Bensaude O, and Morange M. 1987. Deficient activation of heat shock gene transcription in embryonal carcinoma cells. Dev Biol 124: 544-550.
Mezger V, Bensaude O, and Morange M. 1989. Unusual levels of heat shock element-binding activity in embryonal carcinoma cells. Mol Cell Biol 9: 3888-3896.
Morimoto RI, Tissieres A, and Georgopoulos C. 1990. The stress response, function of the proteins, and perspectives. In stress proteins in biology and medicine. (ed. R.I. Morimoto et al.), pp. 1-36. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Morimoto RI. 1991. Heat shock: the role of transient inducible responses in cell damage, transformation, and differentiation. Cancer cells 3: 297-301.
Morimoto RI, Jurivich DA, Kroeger PE, Mathur SK, Murphy SP, Nakai A, Sarge K, Abravaya K, and Sistonen LT. 1994. Regulation of heat shock gene transcription by a family of heat shock factors. The biology of heat shock proteins and molecular chaperones. (ed. R.I. Morimoto et al.), pp. 417-455. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Nelson A and Antonio DM. 2000. ATP and ADP modulate a cation Channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275: 30839-30843.
Nishimura H, Emoto M, Kimura K, and Yoshikai Y. 1997. HSP 70 protects Macrophages infected with Salmonella choleraesuis against TNF-α-induced cell death. Cell Stress Chaperones 2: 50-59.
Oh S, Iwahori A, and Kato S. 1993. Human cDNA encoding DnaJ protein homologue. Biochim Biophys Acta 1174: 114-6.
Peetermans WE, Langermans JAM, van der Hulst MEB, van Embden JDA, and van Furth R. 1993. Murine peritoneal macrophages activated by the mycobacterial 65-kilodalton heat shock protein express enhanced microbicidal activity in vitro. Infect Immun 61: 868-875.
Pelham HRB. 1986. Speculations on the functions of the major heat shock and glucose regulated proteins. Cell 46: 959-961.
Peter MA, Paul KS, and Garfield PR. 1979. A new cleavable reagent for cross-linking and reversible immobilization of proteins. BBRC 87: 734-742.
Polla BS and Cossarizza A. 1996. Stress proteins in inflammation. Experentia 77 (suppl.) : 375-391.
Prapapanich V, Chen S, Nair SC, Rimerman RA, and Smith DF. 1996. Molecular cloning of human p48, a transient component of progesterone receptor complexes and an Hsp70-binding protein. Mol Endocrinol 10: 420-431.
Raynes DA and Guerriero VJ. 1998. Inhibition of Hsp70 ATPase activity and protein renaturation by a novel Hsp70-binding protein. J Biol Chem 273: 32883-32888.
Raynes DA and Guerriero VJ. 2000. Isolation and characterization of isoforms of HspBP1, inhibitors of Hsp70. Biochim Biophys Acta 1490: 203-207.
Ribeiro SP, Villar J, Downey GP, Edelson JD, and Slutsky AS. 1994 . Sodium arsenite induces heat shock protein-72 kilodalton expression in the lungs and protects rats against sepsis. Crit Care Med 22: 922-929.
Royaux I, Minner F, Goffinet AM, and de Rouvroit CL. 1998. A DnaJ-like gene, Hsj2, maps to mouse chromosome 5, at approximately 24 cM from the centromere. Genomics 53: 415.
Sapozhnikov AM, Ponomarev ED, Tarasenko TN, and Telford WG. 1999. Spontaneous apoptosis and expression of cell surface heat-Shock proteins in cultured EL-4 lymphoma cells. Cell Prolif 32: 363-378.
Sarge KD, Zimarino V, Holm K, Wu C, and Morimoto RI. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes and Dev 5: 1902-1911.
Sarge KD, Murphy SP, and Morimoto RI. 1993. Activation of heat shock gene transcription by HSF1 involves oligomerization, acquisition of DNA binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13: 1392-1407.
Scharf KD, Rose S, Zott W, Schoff F, and Nover L. 1990. Three tomato genes code for heat stress transcription factors with a remarkable degree of homology to the DNA-binding domain of the yeast HSF. EMBO J 9: 4495-4501.
Sistonen L, Sarge KD, Phillips B, Abravaya K and Morimoto R. 1992. Activation of heat shcok factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 12: 4104-4111.
Sorger PK. 1991. Heat shock factor and the heat shock response. Cell 65: 363-366.
Spicher A, Guicherit OM, Duret L, Aslanian A, Sanjines EM, Denko NC, Giaccia AJ, and Blau HM. 1998. Highly conserved RNA sequences that are sensors of environmental stress. Mol Cell Biol 18: 7371-7378.
Sultmann H, Sato A, Murray BW, Takezaki N, Geisler R, Rauch GJ, Klein J. 2000. Conservation of Mhc class III region synteny between zebrafish and human as determined by radiation hybrid mapping. J Immunol 165: 6984-93.
Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime SC, Xie Z, Morimoto RI, and Reed JC. 1997. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J 16: 4887-4896.
Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA and Reed JC. 1995. Cloning and functional analysis of BAG-1: a novel Bcl-2 — binding protein with anti-cell death activity. Cell 80: 279-284.
Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, Martin B, Greene LE, and Eisenberg E. 1995. Role of auxilin in uncoating clathrin-coated vesicles. Nature 378: 632-635.
Wei J and Hendershot LM. 1996. Protein folding and assembly in the endoplasmic reticulum. EXS 77: 41-55.
Wolke U, Weidinger G, Koprunner M, and Raz E. 2002. Multiple levels of posttranscriptional control lead to germ line-specific gene expression in the zebrafish. Curr Biol 12: 289-94
Wu SJ and Wang C. 1999. Binding of heptapeptides or unfolded proteins to the chimeric C-terminal domains of 70-kDa heat shock cognate protein. Eur J Biochem 259: 449-455.
Wu SJ, Liu FH, Hu SM, and Wang C. 2001. Different combinations of the heat-shock cognate protein 70 (hsc70) C-terminal functional groups are utilized to interact with distinct tetratricopeptide repeat-containing protein. Biochem J 359: 419-426.
Yeh Fl and Hsu T. 2000. Detection of a spontaneous high expression of heat shock protein 70 in developing zebrafish (Danio rerio). Biosci Biotech Biochem 64: 592-595.
Yeh Fl and Hsu T. 2002. Differential regulation of spontaneous and heat-induced HSP70 expression in developing zebrafish (Danio rerio). Journal of Experimental Zoology. In press.
Young TE, Ling J, Geisler-Lee CJ, Tanguay RL, Caldwell C, and Gallie DR. 2001. Developmental and thermal regulation of the maize heat shock protein, HSP101. Plant Physiol 127: 777-791
Zeiner M and Gehring U. 1995. A Protein that Interacts with Members of the Nuclear Hormone Receptor Family: Identification and cDNA Cloning. Proc Natl Acad Sci USA 92: 11465-11469.
Zeiner M, Gebauer M, and Gehring U. 1997. Mammalian protein RAP46: an interaction partner and modulator of 70-kDa heat shock proteins. EMBO J 16: 5483-5490.
Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, and Hendrickson WA. 1996. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606-1614.
Ziegelhoffer T, Johnson JL, and Craig EA. 1996. Chaperones get Hip. Protein folding. Cuur Biol 6: 272-275.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊