跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/16 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉信宗
論文名稱:表面電漿共振效應在升溫環境中之光相位量測
論文名稱(外文):Phase detecion of light in surface plasmon resonance effect at elevated temperatures
指導教授:江海邦
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:表面電漿共振溫度相依光學性質相位量測外差干涉
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是建立一套表面電漿共振(SPR)相位量測系統,用來探討表面電漿共振在不同溫度下相位的變化及靈敏度限制。實驗方面,利用電光調制器架設出一套外差式干涉儀,來量測表面電漿共振在升溫環境中之光相位變化。而在模擬部分,我們使用本實驗室之前所建立的溫度模型來模擬不同溫度時表面電漿共振曲線的變化。由實驗結果可以看出實驗與模擬曲線對溫度的變化趨勢均相當吻合。此外,我們也以固定入射角的方式量測相位變化對溫度的靈敏度,由實驗結果可得到其對溫度的靈敏度可到達0.1℃以下。

In this thesis, phase detection for surface plasmon resonance (SPR) system is developed and applied to study the phase variation and the temperature-dependent sensitivity of SPR. In our experiment, we construct a heterodyne interferometer with an electro-optic modulator, and use it to measure phase variation of light in SPR at elevated temperatures. In our simulation, we use temperature-dependent SPR model that we have recently constructed to simulate the variation of SPR curves. The experimental results show that the temperature variabilities in experimental curves are very close to simulation curves. In addition, we also measure phase sensitivity at different temperatures based on fixed incident angle. The experimental results show that the temperature sensitivity is better than 0.1℃.

中文摘要 …………………………………………………………… I
英文摘要 …………………………………………………………… II
目錄 ………………………………………………………………… III
圖目錄 ……………………………………………………………… V
第一章 前言 ………………………………………………………… 1
第二章 表面電漿共振理論 ………………………………………… 4
2.1 表面電漿共振物理模型 …………………………………… 4
2.2 表面電漿共振數學模型 …………………………………… 5
2.3 以光學方式激發表面電漿波 ……………………………… 7
2.4 表面電漿多層系統的反射率及相位 ……………………… 9
2.4.1 反射率的求法 ……………………………………… 9
2.4.2 相位的求法 ………………………………………… 11
2.5 表面電漿共振的應用 ……………………………………… 12
2.6 金屬層介電常數及厚度隨溫度變化的關係 ……………… 13
第三章 量測相位的方法 …………………………………………… 15
3.1 傳統干涉術與外差式干涉術的比較 ……………………… 15
3.1.1 傳統干涉術 ………………………………………… 15
3.1.2 外差式干涉術 ……………………………………… 16
3.2 各種外差調變技術 ………………………………………… 17
3.3 電光調制器的基本結構 …………………………………… 19
3.4 使用電光晶體調制的外差光源 …………………………… 23
3.5 以鎖相放大器量測相位差 ………………………………… 25
3.5.1 鎖相放大器的用途 ………………………………… 25
3.5.2 鎖相放大器量測相位差的方法 …………………… 26
第四章 實驗架構 …………………………………………………… 29
第五章 實驗結果與討論 …………………………………………… 32
5.1 表面電漿共振的測量方法及靈敏度比較 ………………… 32
5.1.1 測量方法 …………………………………………… 32
5.1.2 靈敏度比較 ………………………………………… 37
5.2 無鍍膜之稜鏡 ……………………………………………… 39
5.3 實驗結果 …………………………………………………… 42
5.3.1 室溫時實驗與模擬比較 …………………………… 42
5.3.2 不同溫度時實驗與模擬比較 ……………………… 46
5.3.3 Phase modulation靈敏度計算 …………………… 52
5.4 討論 ………………………………………………………… 54
5.4.1 金屬層厚度對反射率及相位曲線的影響 ………… 55
5.4.2 金屬層溫度對反射率及相位曲線的影響 ………… 61
5.4.3 總結 ………………………………………………… 62
5.5 誤差的原因 ………………………………………………… 67
第六章 結論 ………………………………………………………… 68
參考文獻 …………………………………………………………… 70

1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum”, Phil. Magm. 4, 396-402 (1902).
2. R. H. Ritchic, Phys. Rev., 106, 874 (1957).
3. E. Kretschmann, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light”, Z. Naturforsch. 23A, 2135-2136 (1968).
4. A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection”, Z. Physik. 216, 398-410 (1968).
5. Zhang Y, Zhang Y, Terrill RH, et al., “Coupled second-harmonic generation, surface plasmon resonance and AC impedance studies of full and partial monolayers in (Au,Ag)-alkanethiolate electrolyte systems“, Thin Solid Films, 335, 178(1998).
6. C. Seife, Science, 290, 916 (2000)
7. G. Flatgen et al. Science, 269, 668 (1995).
8. B. Rothenhausler and W. Knoll, Nature, 332, 615 (1988).
9. W. Hickel, D. Kamp, and W. Knoll, Nature, 339, 186 (1989).
10. K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy”, Optics Communications, 130, 260-266 (1996).
11. J. N. Wilde, J. Nagel, M. C. Petty, “Optical sensing of aromatic hydrocarbons using Langmuir—Blodgett films of a Schiff base co-ordination polymer”, Thin Solid Films, 327-329, 726 (1998).
12. http://www.biacore.com/
13. http://www.ti.com/spr/
14. http://www.biosensor.com/
15. http://www.biotul.com/
16. S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection”, Sensors and Actuators B 35-36, 187-191 (1996).
17. See, e.g., T. Gotz el .al., Appl. Surf. Sci., 96, (1996) 280 and references therein.
18. J. Homola, S.S. Yee, G. Gauglitz, Sensors and Actuators B 54, 3 (1999).
19. Zhang Y, Zhang Y, Terrill RH, et al., Thin Solid Films, 335, 178 (1998).
20. H.P. Chiang, P.T. Leung, W.S. Tse, J. Chem. Phys. 108, 2659 (1998).
21. H.P. Chiang, P.T. Leung, W.S. Tse, “Optical properties of composite materials at high temperatures “, Solid State Commun. 101, 45 (1997).
22. H.-P. Chiang, P. T. Leung and Wan-Sun Tse, “Remark on the substrate-temperature dependence of surface-enhanced Raman scattering”, J. Phys. Chem. B. 104, 2348 (2000).
23. H.-P. Chiang, Y.-C. Wang, P. T. Leung and Wan-Sun Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance”, Opt. Communications 188, 283-289 (2001).
24. Brueck, S. R. J., Diadihk, V., Jones, T., and Lenth, W., “Enganced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves”, Appl. Phys. Lett. 46(10), 915 (1985).
25. Grant R. Fowles, “Introduction to modern optics”, second edition
26. Claes. Nylander, Bo. Liedberg, and Tommy. Lind, “Gas detection by means of surface plasmon resonance”, Sensors and Actuators 3, 79 (1982).
27. L. M. Zhang, and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance”, Elec. Lett. 24, 1469 (1988).
28. Eduardo. Fontana, R. H. Pantell, and Samuel. Strober, “Surface plasmon immunoassay”, Appl. Opt., 29, 31, 4694 (1990)
29. M. T. Flanagan, and R. H. Pantell, “Surface plasmon resonance and immunoassay”, Elec. Lett., 20, 968 (1984)
30. M. Hendrix, E. S. Priestley, G. F. Joyce, and C. H. Wong, “Direct observation of aminoglycoside-RNA interaction surface plasmon resonance”, L. Am. Chem. Soc.,119, 3641 (1990)
31. Sincerbox, G. T., and Gordon, J. C., “Small fast large-aperture light modulator using attenuated total reflection”, Appl. Opt., 20, 1491 (1981)
32. Savost yanova, N. A., and Sandomirshy, V. B., “Control of the dispersion law of an interface polarition in a metal-semiconductor schottky barrier structure”, IOP Publishing Ltd., 185 (1993)
33. Fuzi. Yang, J. R. Sambles, and G. W. Bradberry, “Determination of optical constands and thickness of highly absorbing using the attenuated total reflection technique”, Appl. Opt., 20, 1491 (1981)
34. B.L. Liedberg, C. Nylander, I. Lundstr om, Sensors and Actuators 4, 299 (1983).
35. T. Holstein, Phys. Rev. 96, 535 (1954).
36. T. Holstein, Ann. Phys. (NY) 29, 410 (1964).
37. W.E. Lawrence, Phys. Rev. B 13, 5316 (1976).
38. S. Herminghaus, P. Leiderer, Appl. Phys. Lett. 58, 352 (1991).
39. P. Hariharan, B. F. Oreb, and T. Eijux, “Digital phase-shift interferometry : a simple error-compensating phase calculation algorithm”, Appl. Opt. 26, 2504 (1987).
40. Ghiglia, D. C., and Romero, L. A., “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods”, J. Opt. Soc. Am. A 11, 107-117 (1994).
41. H. Y. Chang, C. W. Chen, C. K. Lee, C.P. Hu, “The tapestry cellular automata phase unwrapping algorithm for interferogram analysis”, Opt. Eng. 30, 487-502 (1998).
42. W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating”, Appl. Opt. 9, 649-652 (1970).
43. T. Suzuki and R. Hioki, “Translation of light frequency by a moving grating”, J. Opt. Soc. Am. 57, 1551 (1967).
44. J. C. Suits, “Magneto-optical rotation and ellipticity measurements with a spinning analyzer”, Rev. Sci. Instrum. 42, 19-22 (1971).
45. M. P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates”, Opt. Lett. 9, 319-321 (1984).
46. H. Takasaki, N. Umeda, and M. Tsukiji, “Stabilized transverse Zeeman laser as a new light source for optical measurement”, Appl. Opt. 19, 435-441 (1980).
47. N. Umeda, M. Tsukiji, and H. Takasaki, “Stabilized 3He-20Ne transverse Zeeman laser”, Appl. Opt. 19, 442-450 (1980).
48. M. J. Ehrlich and L. C. Philips, and J. W. Wanger, “Voltage-controlled acousto-optic phase shifter”, Rev. Sci. Instrum. 59, 2390-2392 (1988).
49. M. G. Gazalet, M. Raveg, F. Haine, C. Bruneel, and E. Bridoux, “Acousto-optic low frequency shifter”, Appl. Opt. 33, 1293-1298 (1994).
50. P. Dirksen, J. V. D. Werf, and W. Bardoel, “Novel two-frequency laser”, Prec. Eng. 17, 114-116 (1995).
51. D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two frequency laser”, Prec. Eng. 18, 161-163 (1996).
52. 彭江得, “光電子技術基礎”, 儒林出版社 (1993).
53. 李朱育, “外差干涉術在測量s- 與p- 偏光間相位差變化的應用”, 國立交通大學光電工程研究所博士論文 (1999).
54. 邱銘宏, “新型外差式干涉儀與相位計之研究”, 國立交通大學光電工程研究所碩士論文 (1994).
55. B. Rothenhausler and W. Kawata, and Shigeo Minami. “Interferometric determination of the complex wave vector of plasmon surface polaritions”, J. Opt. Soc. Am. B. 5, 7, 1401-1405 (1988).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊