跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 18:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李興龍
論文名稱:金屬-半導體界面之溫度相依表面電漿共振效應
論文名稱(外文):Temperature-dependent surface plasmon resonance effect on a metal-semiconductor junction
指導教授:江海邦
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:80
中文關鍵詞:表面電漿共振金屬-半導體界面溫度相依光學性質
外文關鍵詞:Surface Plasmon ResonanceMetal-Semiconductor InterfaceTemperature-Dependent Optical Properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文最主要目的是研究蕭基界面之表面電漿共振效應隨溫度變化的情形,研究方法是利用衰減全反射法來激發表面電漿共振。在過去幾年中,我們建立了一個溫度模型,利用電子-聲子散射以及電子-電子散射機制,來解釋自由電子金屬的光學性質隨溫度的變化,並模擬在不同溫度下與不同條件的變化情形。在實驗部份我們將針對不同波長的光源作為入射光,不同種類的金屬與半導體,不同金屬與半導體薄膜的厚度,並改變sample的溫度,量測得到在不同參數的情形下之反射率曲線,以了解各個參數對於表面電漿共振的影響,分析溫度模型與實驗量測所得結果,並與理論值所模擬的加以比較。

The principal goal of the thesis is to study the temperature-dependent surface plasmon resonance effect on Schottky junction. We study this effect by using attenuation total reflection (ATR) to excite the surface plasmon resonance. In the last several years, we have established a theoretical model, which can account for the temperature variation of the optical properties of metal, and to simulate the variation at different temperatures and different conditions. In our experiment, we use laser light with different wavelengths as the light source, and change the temperatures of samples in order to measure the reflectivity curves with different kinds and thickness of metals and semiconductors. To understand which parameters affect the surface plasmon resonance, we analyze the results that measured after experiments and compare them with theoretical simulation.

誌謝…………………………………………………………………Ⅰ
摘要…………………………………………………………………Ⅱ
Abstract…………………………………………………………….Ⅲ
目錄…………………………………………………………………Ⅳ
圖目錄………………………………………………………………VI
一、前言………………………………………………………………1
二、原理………………………………………………………………4
2-1 表面電漿的基本理論………………………………………4
2-1-1 表面電漿波的簡介…..…………..…………………4
2-1-2 表面電漿波的色散關係…………..………………..6
2-1-3 表面電漿波的激發………………..………………10
2-2 金屬-半導體接面的基本理論……………………………14
2-2-1 蕭基能障的形成……………….………………….14
2-2-2 蕭基接面的電流傳輸…………………….……….16
2-3 光電子放射的基本理論…………………………………..17
2-4 激發表面電漿於蕭基接面的研究………………………..19
2-5 表面電漿的相關應用……………………………………..23
2-5-1 在光電方面的應用………………………………..23
2-5-2 在光學方面的應用………………………………..23
2-5-3 在量測薄膜厚度方面的應用……………………..24
2-5-4 在光譜儀方面的應用…………………………….24
三、溫度模型……………………………………………………….25
3-1 多層系統的反射率……………………………………….26
3-2 在升溫情況的金屬和半導體的光學常數…………….…28
3-2-1 金屬的介電常數………………………………….28
3-2-2 半導體的介電常數……………………………….29
3-2-3 熱脹效應………………………………………….30
四、實驗架構及方法.…………………….……………………….31
五、實驗結果與討論……………………………………………….34
5-1 模擬結果………………………………………………….34
5-1-1 波長632.8nm………………………………………34
5-1-2 波長820nm……………………………………….39
5-1-3 波長1152nm………………………………………41
5-2 實驗結果………………………………………………….45
5-2-1 入射光波長為632.8nm……………………………45
5-2-2 入射光波長為820nm…………………………….52
5-2-3 變波長……………………………………………..59
5-3 實驗與模擬比較………………………………………….60
5-4 結果討論………………………………………………….71
六、結論……………………………………………………………...73
參考文獻…………………………………………………………….75

1. H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer-Verlag, Berlin,(1988).
2. R. H. Ritchic, Phys. Rev., 106, 874(1957).
3. A. Otto, “Excitation of Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. Physik. 216, 398-410
(1968).
4. E. Kretschmann, H. Raether, “Radiative Decay of Non-radiative Surface Plasmons Excited by Light”, Z. Naturforsch. 23A, 2135-
2136 (1968).
5. G. T. Sincerbox and J. C. Gordon, “Small Fast Large-Aperture Light Modulator Using Attenuated Total Reflection,” Appl. Opt. 20, 1491-1495(1981).
6. Jay S. Schildkraut, “Long-Range Surface Plasmon Electrooptic Modulator, ” Appl. Opt. 27,4587-4590(1988).
7. D. L. Chiao and C. M. Lee, “The Frequency Response of an Attenuated Total Reflection Modulator, ” J. Appl. Phys. 65, 3344-
3346 (1989).
8. Savost yanova, N. A., and Sandomirshy, V. B., “Control of the Dispersion Law of an Interface Polarition in a Metal - Semiconductor Schottky Barrier Structure”, IOP Publishing Ltd., 185(1993).
9. Zhang Y, Zhang Y, Terrill RH, et al., Thin Solid Films, 335, 178(1998).
10. C. Seife, Science, 290, 916(2000).
11. G. Flatgen et al. Science, 269, 668(1995).
12. B. Rothenhausler and W. Knoll, Nature, 332, 615(1988).
13. W. Hickel, D. Kamp, and W. Knoll, Nature, 339, 186(1989).
14. K. A. Peterlinz and R. Georgiadis, Optics Communications, 130, 260(1996).
15. J. N. Wilde, J. Nagel, M. C. Petty, Thin Solid Films, 327-329, 726 (1998).
16. J. Derov, Y. Y. Teng. And A. S. Karakashian, “Angular Scan Spectrum of a Surface Plasma Excitation on a Schottky Diode, ” Physics Letters, 95A, 197-200(1983).
17. M. J. Cazca, C. C. Chang, and A. S. Karakashian, “A Model Calculation For Surface Plasma-enhanced Internal Photoemission in Schottky-barrier Photodiodes,” J. Appl. Phys., 66, 3386-3391 (1989).
18. C. Daboo et. al., Thin Solid Films, 189, 27-39(1990).
19. C. Daboo, M. J. Baird and H. P. Hughes, Thin Solid Films, 201, 9-27 (1991).
20. E. D. Palik, “Handbook of Optical Constants of Solids II,” Academic Press, 1991.
21. H.-P. Chiang, P. T. Leung and Wan-Sun Tse, “Optical Properties of Composite Materials at high Temperature,” Solid State Communications, 101, 45-50 (1997).
22. H.-P. Chiang, P. T. Leung and Wan-Sun Tse, “The Surface Plasmon Enhancement Effect on Adsorbed Molecules at Elevated Temperatures,” J. Chem. Physics 108(6), 2659-2660 (1998).
23. H.-P. Chiang, P. T. Leung and Wan-Sun Tse, “Remark on the Substrate-temperature Dependence of Surface-enhanced Raman Scattering,” J. Phys. Chem. B. 104, 2348(2000).
24. Brueck, S. R. J., Diadihk, V., Jones, T., and Lenth, W., “Enganced
Quantum Efficiency Internal Photoemission Detectors by Grating Coupling to Surface Plasma Waves,” Appl. Phys. Lett. 46(10), 915 (1985).
25. D. C. Cullen, C. R. Lowe, “Detection of Immuno-complex Formation Via Surface Plasmon Resonance on Gold-coated Diffraction Gratings,” Biosensors 3, 211-225 (1987).
26. Mott, N. F., “Note on the Contact Between a Metal and an Insulator or Semiconductor,” Pro. Cam. Philo. Soc. 34, 568 (1938).
27. C. Daboo, M. J. Baird and H. P. Hughes, N. Apsley and M. T. Emeny, “Improved Surface Plasmon Enhanced Photodetection at an Au-GaAs Schottky Junction Using a Novel Molecular Beam Epitaxy Grown Otto Coupling Structure,” Thin Solid Films, 201, 9-27(1991).
28. Claes. Nylander, Bo. Liedberg, and Tommy. Lind, “Gas Detection
by Means of Surface Plasmon Resonance,”Sensors and Actuators, 3, 79 (1982).
29. L. M. Zhang, and D. Uttamchandani, “Optical Chemical Sensing
Employing Surface Plasmon Resonance,” Elec. Lett. 24, 1469 (1988).
30. Eduardo. Fontana, R. H. Pantell, and Samuel. Strober, “Surface
Plasmon Immunoassay,” Appl. Opt., 29, 31, 4694 (1990).
31. M. T. Flanagan, and R. H. Pantell, “Surface Plasmon Resonance and Immunoassay,” Elec. Lett., 20, 968 (1984).
32. M. Hendrix, E. S. Priestley, G. F. Joyce, and C. H. Wong, “Direct Observation of Aminoglycoside-RNA Interaction Surface Plasmon Resonance,” J. Am. Chem. Soc.,119, 3641 (1997).
33. K. M. Torosian, A. S. Karakashian, and Y. Y. Teng, “Surface Plasma-enhanced Internal Photoemission in Gallium Arsenide Schottky Diodes,” Appl. Opt. 26, 2650-2652(1987)
34. Fuzi. Yang, J. R. Sambles, and G. W. Bradberry, “Determination of Optical Constands and Thickness of Highly Absorbing Using the Attenuated Total Reflection Technique,” J. Mod. Opt. 8, 1441 (1991).
35. W. M. Robertson, and E. Fullerton, “Rexxamiation of the Surface Plasma Waves Technique for Determining the Dielectric Constant and Thickness of Metal Films, ” J. Opt. Soc. Am. B6, 1584(1989).
36. J. Homola, S.S. Yee, G. Gauglitz, Sensors and Actuators. B 54, 3 (1999).
37. B.L. Liedberg, C. Nylander, I. Lundstr om, Sensors and Actuators, 4, 299(1983).
38. T. Holstein, Phys. Rev. 96, 535(1954).
39. T. Holstein, Ann. Phys. (NY) 29, 410(1964).
40. W.E. Lawrence, Phys. Rev. B 13, 5316(1976)
41. Oguz Yavas et. al., “Temperature Dependence of Optical Properties for Amorphous Silicon at Wavelengths of 632.8 and 752nm, ” Optics Letters,18,540-542(1993).
42. G. E. Jellison, Jr. and H. H. Burke, J. Appl. Phys.60(2), 841-843(1986).
43. G. E. Jellison, Jr. and D. H. Lowndes, Appl. Phys. Lett. 41(7), 594-596(1982).
44. S. Herminghaus, P. Leiderer, Appl. Phys. Lett. 58, 352(1991).
45. T. Kume, S. Hayashi, and K. Yamamoto, Jap. J. Appl. Phys. 32 (1993) 3486.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top