跳到主要內容

臺灣博碩士論文加值系統

(44.200.175.255) 您好!臺灣時間:2022/08/11 14:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃國欽
論文名稱:金屬與氮化鎵蕭特基介面之表面處理效應
論文名稱(外文):Surface treatment effect of metal-Gallium Nitride Schottky interface
指導教授:吳允中藍文厚
指導教授(外文):Yeun Jung WuWen How Lan
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:76
中文關鍵詞:蕭特基二極體電流轉換機制特徵電阻特性能量理想因子能障熱激發方式蝕刻缺陷密度
外文關鍵詞:Schottky diodescurrent transport mechanismsspecific contact resistancethe characteristic energyideality factorbarrier heightthermionic emission(TE)etch pits density (EPD)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中, 我們研究N型氮化鎵鎳金的電流轉換機制和在表面處理的條件後,蕭特基二極體的熱穩定性。藉由特徵電阻 、特性能量、能障、理想因子 、和溫度的關係,來求得電流轉換的機制。電流轉換機制直接和表面處理的條件有關。所以在蕭特基二極體的製作時,我們藉由乾式蝕刻的方法來打斷氮-鎵之間的強鍵結,而使用感應耦合電漿離子反應蝕刻的技術來研究蝕刻缺陷。
藉由熱處理和表面處理的方法,來探討電流轉換的機制。我們發現在沒有蝕刻的條件下,電流轉換機制由熱激發方式 (TE) 來主導。及使用乾式蝕刻處理後,在氮氣下作600℃熱退火和氫氣下作500℃熱退火,可以使得蝕刻缺陷減少,亦是熱激發方式TE的電流轉換機制在主導。
蝕刻缺陷密度(EPD)的定義是每單位面積由離子轟擊所造成的缺陷。在高溫退火的條件下,可以使EPD減少,亦是由乾式蝕刻產生的缺陷可以減少。另一方面,為了減少由乾式蝕刻產生的缺陷,我們可以使用射頻功率小於150W,使缺陷減少。除此之外,在蝕刻的條件中,增加氯氣的流量也可以減少缺陷。

In this thesis, we study the current transport mechanisms of the Ni/Au on n-GaN and the thermal stability of the Schottky diodes after surface treatment. The current transport mechanisms are modeled by specific contact resistance, the characteristic energy, the barrier height, ideality factor and temperature. The current transport mechanisms are directly dependent on surface treated condition. The Schottky diodes are fabricated by dry etching methods in order to break the strong Ga-N bonds (8.92 eV/atom). We utilize inductively coupled plasma reactive ion etching (ICP-RIE) technique to investigate etching damages.
The mechanisms for current transport were investigated by the thermal treatments and surface treatments. We find that the thermionic emission (TE) had been established without etching damages. The ion damages degradation may occur after the 600℃ in nitrogen ambient and the 500℃ in hydrogen ambient; that is, the dominated transport mechanism is thermionic Emission (TE).
The etch pits density (EPD) is defined as the holes per area, which results from ion bombarding the GaN surface. The EPD decreases by annealing at high temperature, this result indicates that can decrease the ion damage. In the other hand, to decrease the ion damage, the less damaged areas or defects are produced as the chuck rf power is less than 150 W. Besides, increasing the Cl2 gases can reduce the ion bombarding damage also.

Chapter 1 Introduction
1.1 The research background on GaN
1.2 Overview of the dissertation
Chapter 2 Theory and measurement techniques
2.1 Mechanisms for the current transport
2.1.1 Thermionic emission (TE)
2.1.2 Thermionic-field emission (TFE)
2.1.3 Filed emission (FE)
2.2 Analysis methods
2.2.1 Current-voltage (I-V) characteristics by thermionic
emission (TE) theory
2.2.2 Current-voltage (I-V) characteristics by thermionic-
field emission (TFE) theory
2.2.3 Current-voltage-temperature (I-V-T) characteristics
by thermionic emission (TE) theory
2.2.4 Current-voltage characteristics with series
resistance by thermionic emission (TE) theory
2.2.5 Capacitance-voltage (C-V) characteristics
Chapter 3 Experimental arrangement
3.1 Growth of GaN
3.2 Inductively coupled plasma reactive ion etching (ICP-
RIE)
3.3 Experimental flow
3.3.1 Fabrication processes of the Schottky diodes by ICP
etching
3.3.2 Fabrication processes of the Schottky diodes
3.3.3 Fabrication processes of the Schottky diodes with
different carrier concentration
Chapter 4 Results and Discussion
4.1 Mechanisms for the current transport by current-
voltage temperature (I-V-T)
4.2 Electrical characteristics of n-type GaN under
thermal treatments in different gases
4.2.1 Thermal stability of n-type GaN with dry etching in
N2 ambient
4.2.2 Thermal stability of n-type GaN with dry etching in
H2 ambient
4.2.3 Thermal stability of the untreated n-type GaN in N2
or H2 ambient
4.3 n-type GaN with different carrier concentration
4.4 n-type GaN with different dry etching condition
4.4.1 different chuck rf power
4.4.2 different gases flow
Chapter 5 Conclusion and Future work
5.1 Conclusion
5.2 Future work

[1]Lei Wang and M.I.Nathan ,”High barrier height GaN
Schottky diodes:Pt/GaN and Pd/GaN”,Appl.Phys.Lett.68,
P1267~1269, in 1996.
[2]Lei Wang and M.i.Nathan, ”High barrier height GaN
Schottky diodes: Pt/GaN and Pd/GaN”, Appl.phys.Lett. 68,
pp1267~pp1269, in 1996.
[3]J.D.Guo M.S.Feng and R.J.Guo F.M.Pan and C.Y.Chang,
“Study of Schottky barriers on n-type GaN grown by low-
pressure metalorganic chemical vapor deposition”,
Appl.phys.Lett. 67,pp2657~pp2659, in 1995.
[4]Ja-Soon Jang, Seong-Ju Park and Yeon Seong, “Formation of
low resistance Pt ohmic contacts to p-type GaN using two-
step surface treatment”, J. Vac. Sci. Technol. B17,
pp2667~pp2670, in 1999.
[5]A.C.Schmitz,A.T.Ping, M.Asif Khan,Q.Chen,J.W.Yang,and
I.Adesida, “Metal contacts to n-type GaN”, Journal of
Electronic Materials, Vol.27,No 4, pp255~pp260, in 1998.
[6]P.Hacke,T.Detchprohm,K.Hiramatsu,and N.Sawaki, “Schottky
barrier on n-type GaN grown by hydride vapor phase
epitaxy”, Appl. Pyhs. Lett. , 63, pp2676~ pp2678 , in
1993.
[7]X.A.Cao and S.J.Pearton g.Dang, A.P.Zhang, and F.Ren
J.M.Van Hove, “Effect of interfacial oxides on Schottky
barrier contacts to n and p-type GaN”, Appl. Phys. Lett.
Vol.75, pp 4130~pp4132, in 1999.
[8]S.C.Binari. H.B.Dietrich, G.Kelner, L.B.Rowland,
K.Doverspike and D.k.Gaskill, “Electrical
characterization of Ti Schottky barriers on n-type GaN”,
Electronics Letters, Vol 30 No.11,pp909~pp910, in 1994.
[9]J.D.Guo F.M.Pan M.S.Feng and R.J.Guo P.F.Chou and
C.Y.Chang,“ Schottky contact and the thermal stability of
Ni on n-type GaN”, J. Appl. Phys. 80,1, pp1623~pp1627, in
1996.
[10]A.Y.C.Yu, ”Electron tunneling and contact resistance of
metal-silicon contact barriers”, Solid-State
Electronics, Vol.13, pp239~pp247, in 1970.
[11]K.Hattori and Y. izumi, “ The electrical characteristics
of degenerate InP Schottky diodes with an interfacial
layer”, J.Appl.Phys. ,53 , pp6906~ pp6910, in 1982.
[12]Dieter K. Schroder, ”SEMICONDUCTOR MATERIAL AND
DEVICE CHARACTERIZATION”, second edition, in 1998.
[13]R.Hull. R.M.Osgood, Jr. H. Sakaki a.Zunger, ”Nitride
Semiconductorsand Devices”, in 1999.
[14]L.S.Yu, Q.Z.Liu, Q.J.Xing, D.J.Qiao, and S.S.Lau, ”The
role of the tunneling component in the current-voltage
characteristics of metal-GaN Schottky diodes”,
J.Appl.Phys., Vol. 84, pp2099~pp2104, in 1998.
[15]S.M.Sze,”Physics of Semiconductor Devices” 2nd Edition.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top