跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃玉娟
研究生(外文):Yu-Jiuan Hung
論文名稱:吳郭魚肉和青魚肉儲藏中之肉質變化
論文名稱(外文):Meat Quality Evaluation of Tilapia and Black Chinese Roach Being Postmortem Aged.
指導教授:龔鳴盛龔鳴盛引用關係
指導教授(外文):Ming-Sheng Kong
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系碩士在職專班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:94
中文關鍵詞:肌肉穿破力保水力嚼感多汁性肉質鮮甜度嫩化作用僵直作用
外文關鍵詞:penetration forcePFwater holding capacityWHCchewabilityjuicinessmeaty sweetnessumamitenderizationrigor mortis
相關次數:
  • 被引用被引用:8
  • 點閱點閱:839
  • 評分評分:
  • 下載下載:146
  • 收藏至我的研究室書目清單書目收藏:3
本研究選擇以淡海水雙棲吳郭魚和淡水青魚為實驗對象,進行4℃、20℃儲藏中肉質及生理變化的測試和比較。以新設計的一套肉質指標包括測試肌肉穿破力(penetration force; PF)、保水力(water holding capacity; WHC)、IMP含量,來分別量化地代表嚼感(chewability)、多汁性(juiciness)及肉質鮮甜度(meaty sweetness; umami),進行肉質口感的品評。這些新指標和傳統K值指標在儲藏中的變化,將進一步與宰殺後魚肉主要影響肉質的生理變化,包含死後僵直作用、死後嫩化作用及死後微生物腐敗的發生相對照,以了解彼此關係
實驗結果發現儲藏中肉質變化是受僵直作用、嫩化作用及腐敗作用所複合的影響,而K值僅能反映核苷酸降解程度,故只能反映死後僵直進程,而未能涵蓋死後嫩化作用對肉品的影響;也就不能完全適用於生魚片品質之鑑識。而代表嚼感之穿破力變化圖譜,被證實是能反映僵直作用與嫩化作用競爭發生時,複合地對肉質的影響,且所有穿破力變化圖譜均會出現相似的四階段變化,依序出現為硬實期(firming)是僵直作用大於嫩化作用所致、第一次軟化期(first softening)為嫩化作用大於僵直作用所致、持平期為僵直作用及嫩化作用皆已終止及第二次軟化期為微生物腐敗作用發生期,由這些圖譜又可判讀出嚼感變化測試時,可區分優良嚼感期及裂化期,可供反應不同魚種在不同溫度下適合進食的儲藏期限。4℃、20℃吳郭魚和青魚所具有的優良嚼感期分別為20hr、10hr及10hr、7hr。保水率和鮮甜度均受僵直作用所主宰,其中肉質保水率隨僵直作用而下降;鮮甜度的含量卻是在僵值後期方會上升。吳郭魚的優良嚼感期依此又可被區分為儲藏初期屬多汁而低鮮甜度,後期則屬低汁高鮮甜度。青魚不僅僵直進程較快且ATP降解及IMP累積更會出現多段式的反覆升降,難有持久的高IMP維持期的出現。更特殊的是強烈的嫩化作用在4℃儲藏6hr、20hr儲藏0-2hr、4-6hr出現令外觀僵直指標包括魚體垂尾度及肌纖維向收縮度均完全停止。因此,青魚的肉質穿破力曲線雖類似吳郭魚,但其優良嚼感期卻遠短於後者,且無明顯鮮甜組成累積的跡象。此結果似反映淡水魚的死後肉質維持能力明顯較淡鹽水雙棲的魚種為差。
Tilapia was cultured in fresh water and sea, while black chinese roach only in fresh water were select for this study to investigate the changes of meat texture quality and biochemistry of their dorsal muscle during postmortem storage at 4℃ and 20℃. New indices of meat texture were established, including penetration force(PF), water holding capacity (WHC)and inosine monophosphate(IMP) content were represented for the chew-ability, juiciness and meaty sweetness (umami)to evaluate the progress of meat texture quality. In addition, to compare these new indices with traditional K value index for biochemistry changes on meat texture during storage, including rigor mortis, tenderization and putrefaction of microbe were investigated.
Result showed that the compound effect of rigor mortis, tenderization and putrefaction of microbe had the most influence on the changes of meat texture quality of their dorsal muscle during storage. K value could only reflect the degradation of nucleotide as well as used for rigor mortis progress, not including the effect on meat texture quality by tenderization, so the k value was not adopted for the sashimi index. Whereas the diagram of penetration force (PF diagram) represented the chew-ability was proved to reflect the competitive occurrence of rigor mortis and tenderization on meat texture quality during storage at 4℃ and 20℃. Four phases developing of PF diagram were observed, including the firm period caused by rapid developing of rigor mortis take place was far ahead of tenderization development, first softening period caused by rapid developing of tenderization was far ahead of rigor mortis progress, holding stage caused by termination of rigor mortis and tenderization, and second softening stage caused by putrefaction of microbe, respectively. It was also found that two stage of chew-ability from PF diagram, including the excellent chew-ability and spoilage stage were adopted for feeding times for another fish species during storage at different temperatures. This revealed that tilapia and black chinese roach which had excellent chew-ability at 20hr、10hr and 10hr 、7hr during storage at 4℃ and 20℃, respectively. WHC and umami were mainly controlled by rigor mortis effect and WHC was decreased followed by increasing of rigor mortis progress, while the IMP content was increased at late-occurring rigor- mortis. As well as for the excellent chew-ability stage of tilapia could be divided two stage, initial stage which had high juiciness but uamami was lower, the lower juiciness but high umami for later stage. In contrary to rigor mortis progress of black chinese roach was more rapid than tilapia. It was found that IMP content was not holding at higher stage, due to the poly-phases changes were observed by degradation of ATP and pile of IMP content were increased or decreased reversibly. In addition, the time of strong tenderization was observed at 6hr as well as 0~2hr、4~6hr for aging at 4℃ and 20℃, respectively. And rigor indices, including RIbody and musclue shortening (S%) were terminated completely. Although that the PF diagram of black chinese roach was the same as the tilapia’s, but it’s excellent chew-ability was shorter than tilapia’s and IMP content is not increased significantly. It was proved that lasting stage of meat texture quality of fishes were cultured in fresh water lower than fishes were cultured in fresh water and sea.
目 錄
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅲ
第一章:前言
第一節、 研究背景與目的……………………………………………..1
第二節、 文獻整理……………………………………………………..4
一、 魚類組成特性………………………………………………………4
1. 魚肉蛋白質…………………………………………………….....4
二、 魚體死後儲藏期間的生理作用…………………………………..5
1.死後僵直作用…………………………………………………......5
1.1 死後僵直作用機制………………………………………….....5
1.2 影響魚體死後僵直的因子………………………………….....6
(1) 魚種……………………………………………………….......6
(2) 生理狀況………………………………………………….......6
(3) 致死條件………………………………………………….......6
(4) 儲藏溫度…………………………………………………..7
1.3 死後僵直作用的鑑識指標………………………………...8
2. 嫩化作用………………………………………………………....9
2.1 嫩化作用機制……………………………………………….....9
2.1.1肌原纖維弱化…………………………………………….....9
(a) Z-line的弱化……………………………………………......9
(b) 肌原纖維蛋白的斷裂……………………………………......9
2.1.2 細胞周圍結締組織的弱化…………………………….....10
2.2 蛋白酵素對嫩化作用之效應………………………………....12
2.3 鈣離子對嫩化作用之化學效應……………………………...14
2.4 死後嫩化作用的鑑識指標…………………………………....15
3.腐敗作用之肉質軟化……………………………………………...16
3.1 魚體儲藏期間鮮度指標……………………………………....17
3.1.1 揮發性鹽基態氮…………………………………………...17
3.1.2 pH 值…………………………………………………......17
3.1.3 K值……………………………………………………......17
三、生魚片品質測定…………………………………………………..18
1. 穿破力測定……………………………………………………….18
2. 保水率測定……………………………………………………….18
3. 官能品評………………………………………………………….19
4. 鮮度變化………………………………………………………….20
第二章:實驗材料與方法
第一節、 實驗材料…………………………………………………….22
第二節、 實驗方法…………………………………………………….22
1.死後嫩化度測定…………………………………………………..22
2.外觀將值度測定…………………………………………………..24
3.pH值測定…………………………………………………………..25
4.肌肉穿破力測定…………………………………………………..25
5.核苷酸及相關化合物分析及K值之計算………………………...25
6.蛋白質定量分析…………………………………………………..27
7.肌纖維收縮度測定………………………………………………..27
8.揮發性鹽基態氮測定……………………………………………..28
9.保水率測定………………………………………………………..29
第三章:結果與討論─壹
吳郭魚儲藏中品質變化
第一節、前言…………………………………………………….…….30
一、 死後僵直作用進程……………………………………………...30
二、 死後嫩化作用…………………………………………………...30
三、 僵直作用和嫩化作用的競爭…………………………………...31
第二節、傳統的生魚片品質指標─K值和VBN
一、K值變化………………………………………………………...32
二、VBN變化………………………………………………………...32
第三節、 生魚片新品質指標
一、穿破力(咀嚼感)測試………………………………………..33
1. 穿破力/穿破變形度圖譜與生魚片死後生理作用之相關性….34
2. 穿破力圖譜對生魚片口感品質鑑識上之運用………………..35
二、保水率(多汁性)測試………………………………………..36
1. 保水率與死後生理變化之相關性……………………………..36
2. 保水率與生魚片口感多汁性品質鑑識上之運用……………..36
三、IMP含量(鮮甜度)測試……………………………………...37
1. IMP含量與死後生理變化之相關性………………………….…37
2. IMP含量與生魚片口感多汁性品質鑑識上之運用…………….37
四、生魚片綜合口感品質評估圖譜………………………………..37
第四節、 傳統品質指標與新建立指標對生魚片品質鑑識適用
性汁比較……………………………………………………..38
第四章:結果與討論─貳
青魚儲藏中品質變化
第一節、生魚片儲藏中影響肉質的主要死後生理變化……………..40
一、死後僵直作用進程……………………………………………..40
二、死後嫩化作用…………………………………………………..41
三、僵直作用和嫩化作用的競爭…………………………………..44
第二節、傳統的生魚片品質指標─K值和VBN
一、K值變化………………………………………………………...44
二、VBN變化………………………………………………………...44
第三節、生魚片新品質指標
一、穿破力(咀嚼感)測試………………………………………..45
1. 穿破力/穿破變形度圖譜與生魚片死後生理作用之相關性….45
2. 穿破力圖譜對生魚片口感品質鑑識上之運用………………..45
二、保水率(多汁性)測試………………………………………..46
1. 保水率與死後生理變化之相關性……………………………..46
2. 保水率與生魚片口感多汁性品質鑑識上之運用……………..47
三、IMP含量(鮮甜度)測試……………………………………...47
1. IMP含量與死後生理變化之相關性…………………………….47
2. IMP含量與生魚片口感多汁性品質鑑識上之運用…………….47
四、生魚片綜合口感品質評估圖譜………………………………..47
第四節、傳統品質指標與新建立指標對生魚片品質鑑識適用
性之比較……………………………………………………..48
第五章:結論…………………………………………………………..49
參考文獻………………………………………………………………. 52
圖 目 錄
圖 3-1、吳郭魚背肉於(A)4℃、(B)20℃儲藏中,K值變化……62
圖 3-2、吳郭魚背肉於(A)4℃、(B)20℃儲藏中,VBN值變化…63
圖 3-3、吳郭魚背肉和兔背肉以食品物性測定儀測試所得之穿
破力/穿破變形度代表圖譜………………………………….64
圖 3-4(A)、吳郭魚背肉於4℃儲藏中,穿破力/穿破變形度
變化……………………………………………………..65
圖 3-4(B)、吳郭魚背肉於20℃儲藏中,穿破力/穿破變形度
變化……………………………………………………..66
圖 3-5、吳郭魚背肉於(A)4℃、(B)20℃儲藏中,保水率和
RIbody值相關性變化………………………………………..67
圖 3-6、吳郭魚背肉於(A)4℃、(B)20℃儲藏中,IMP含量和
鮮甜度閥值區………………………………………………..68
圖 3-7(A)、吳郭魚背肉於4℃儲藏中,以生魚片新品質指標變化,
繪製而成的生魚片綜合口感品質評估圖譜…………..69
圖 3-7(B)、吳郭魚背肉於20℃儲藏中,以生魚片新品質指標變化,
繪製而成的生魚片綜合口感品質評估圖譜…………..70
圖 3-8(A)、吳郭魚背肉於4℃儲藏中,生魚片綜合口感品質評估
圖譜與K值及VBN值相關性…………………………...71
圖 3-8(B)、吳郭魚背肉於20℃儲藏中,生魚片綜合口感品質評估
圖譜與K值及VBN值相關性…………………………...72
圖 4-1、青魚背肉於(A)4℃、(B)20℃儲藏中,嫩化率及嫩
化度變化……………………………………………………..73
圖 4-2、青魚背肉於(A)4℃、(B)20℃儲藏中,pH值變化…….74
圖 4-3、青魚背肉於(A)4℃、(B)20℃儲藏中,ATP和
ATP/ADP含量變化…………………………………………...75
圖 4-4(A)、青魚背肉於4℃儲藏中,ATP、ADP、AMP、IMP、
Inosine和Hypoxanthine含量變化…………………….76
圖 4-4(B)、青魚背肉於20℃儲藏中,ATP、ADP、AMP、IMP、
Inosine和Hypoxanthine含量變化…………………….77
圖 4-5(A)、青魚背肉於4℃儲藏中,ATP、ADP、AMP、IMP、
Inosine和Hypoxanthine含量和嫩化進程之相關性
變化……………………………………………………..78
圖 4-5(B)、青魚背肉於20℃儲藏中,ATP、ADP、AMP、IMP、
Inosine和Hypoxanthine含量和嫩化進程之相關性
變化……………………………………………………..79
圖 4-6、青魚背肉於(A)4℃、(B)20℃儲藏中,RIfiber和
肌纖維向收縮率變化………………………………………..80
圖 4-7、青魚背肉於(A)4℃、(B)20℃儲藏中,K值變化……..81
圖 4-8、青魚背肉於(A)4℃、(B)20℃儲藏中,VBN值變化……82
圖 4-9(A)、青魚背肉於4℃儲藏中,穿破力/穿破變形度
變化……………………………………………………..83
圖 4-9(B)、青魚背肉於20℃儲藏中,穿破力/穿破變形度
變化……………………………………………………..84
圖 4-10、吳郭魚背肉於(A)4℃、(B)20℃儲藏中,保水率和
RIbody值相關性變化……………………………………….85
圖 4-11、青魚背肉於(A)4℃、(B)20℃儲藏中,IMP含量和
鮮甜度閥值區……………………………………………….86
圖 4-12(A)、青魚背肉於4℃儲藏中,以生魚片新品質指標
變化,繪製而成的生魚片綜合口感品質評估圖譜….87
圖 4-12(B)、青魚背肉於20℃儲藏中,以生魚片新品質指標變化,
繪製而成的生魚片綜合口感品質評估圖譜………….88
圖 4-13(A)、青魚背肉於4℃儲藏中,生魚片綜合口感品質
評估圖譜與K值及VBN值相關性…………………....89
圖 4-13(B)、青魚背肉於20℃儲藏中,生魚片綜合口感品質評
估圖譜與K值及VBN值相關性………………………...90
附錄圖-1、吳郭魚背肉於(A)4℃、(B)20℃儲藏中,pH值變化.91
附錄圖-2、吳郭魚背肉於(A)4℃、(B)20℃儲藏中,ATP和
ATP/ADP含量變化………………………………………...92
附錄圖-3、吳郭魚背肉於(A)4℃、(B)20℃儲藏中,
RIbody和纖維向收縮度…………………………………..93
附錄圖-4、吳郭魚背肉於(A)4℃、(B)20℃儲藏中,嫩化率
及嫩化度變化……………………………………………..94
參考文獻
江平重男、內山均、宇田文昭。1974。魚類筋肉ATP關連化合物的定量。水產生物化學、食品學實驗書,河端俊治等編著。PP. 17. 恆星社厚生閣。東京,日本。
吳清熊。1987。魚肉蛋白質。pp. 63.華香園出版社。台北。
陳福隆。1993。肌肉僵直度新鑑視方法的建立-吳郭魚鈣引發肌肉收縮之示差熱分析。國立臺灣海洋大學水產食品科學研究所碩士學位論文。基隆。
陳憶雯。 1994。美洲大魷魚魚漿及吳郭魚肌原纖維萃取物之熱分析。國立臺灣海洋大學水產食品科學研究所碩士學位論文。基隆。
李欣玫。1994。烏魚水溶性蛋白質對煉製品成膠性之影響。國立臺灣
海洋大學水產食品科學研究所碩士學位論文。基隆。
黃琇娟。1994。肌原纖維蛋白質多重組態之熱分析鑑識。國立臺灣海洋大學水產食品科學研究所碩士學位論文。基隆。
陳東輝。1995。吳郭魚死後僵直中嫩化作用對肉品品質的影響。國立臺灣海洋大學水產食品科學研究所碩士學位論文。基隆。
蘇崇文。1996。以DSC、TRM、TSRM研究魚肉及魚糕品質。國立臺灣海洋大學水產食品科學系博士論文。基隆。
黃壬健。1997。吳郭魚肉在常溫儲藏及水煮加工肉質變化,國立臺灣海洋大學水產食品科學系碩士論文。基隆。
楊惠喬。1999。吳郭魚生魚片及蒸煮肉之肉質變化。國立臺灣海洋大學食品科學系碩士論文。基隆。
談啟興。2000。MTRM儀器分析和萃取法對吳郭魚死後僵直和嫩化進程的鑑識。國立臺灣海洋大學食品科學系碩士論文。基隆。
林英才。2000。以DSC、TRM及穿破力測試鑑識兔肉儲藏中肉質的變化。國立臺灣海洋大學食品科學系碩士論文。基隆。
Abe, H. and Okumn, E. 1991. Rigor-mortis progress of carp acclimated to different water temperatures. Nippon Suisan Gakkaishi. 57:2095.
Ando, M., Toyohara, H., Shimizu, Y., and Sakaguchi, M. 1991a. Post-mortem tenderization of rainbow trout (Oncorhyncus mykiss) muscle cause by gradual disintegration. J. Sci. Food Agric. 55:589.
Ando, M., Toyohara, H., Shimizu, Y., and Sakaguchi, M. 1991b. Post-mortem tenderization of fish muscle proceeds independently of resolution of rigor mortis. Nippon Suisan Gakkaishi. 57(6):1165.
Ando, M., Toyohara, H., Shimizu, Y., and Sakaguchi, M. 1991c. Validity of a puncture test for evaluating change in muscle firmness of fish during ice storage. Nippon Suisan Gakkaishi. 57:2341.
Ando, M., Toyohara, H., Shimizu, Y. and Sakaguchi, M. 1992a. Three-dimensional structure of collagen fibrillar network of pericellular connective tissue in association with firmness of fish muscle. Nippon Suisan Gakkaishi. 58(7):1361.
Ando, M., Toyohara, H., Shimizu, Y. and Sakaguchi, M. 1992b. Post-mortem tenderization of rainbow trout muscle caused by the disintedration of collagen fibers in the pericellular connective tissue. Bull. Jap. Soc. Fish. 58:567.
Ando, M., Nishiyabu, A., Tsukamasa, Y. and Mkinodan, Y. 1999. Post-mortem softening of fish muscle during chilled storge as affected by bleeding. J. Food Sci. 64(3):423.
Asghar, A. and Hendrickson, R. L. 1982. Postmortem stimulation of carcasses: Effects on biochemistry, biophysics, microbiology and quality of meat. CRC Crit. Rev. Food Sci. Nutri. 18:1.
Ashgar, A. and Yeates, T. 1986. Functionality of muscle protein in gelation mechanisms of structured meat products. CRC. Crit. Rev. Food Sci. Nutr. 10:115.
Batlle, N., Aristoy M.C. and Toldra F.2000.Early postmortem detection of exudative pork meat based on nucleotide content. J. Food Sci. 65:413.
Bendall, J. R. 1973. Postmortem changes in muscle. In ”The Structure and Function of Muscle” (G. H. Bourne, ed.), 2nd Ed., Part 2, pp. 243-309. Academic Press, London.
Bensadoun, A. and Weinstein, D. 1976. Assay of protein in the presence of interfering materia. Anal. Biochem. 70:241.
Bito, M., Yamada, K., Mikumo, Y. and Amano, K. 1983. Studies on rigor mortis of fish-Ⅰ Difference in the mode of rigor mortis among some varieties of fish by modified cutting’s method. Bull. Tokai Reg. Fish. Res. Lab. 109:89.
Busconi, L., Folco, E. J., Martone, C. B. and Sanchez, J. J. 1989. Postmortem changes in cytoskeletal elements of muscle. J. Food Biochem. 13:443.
Davey, C. L. and Gilbert, K. V. 1974. The mechanism of cold-induced shortening in beef muscle. J. Food Technol. 9:51.
Dayton, W. R., Schollmeyer, J. V., Lepley, R. A. and Cortes, L. S. 1981. A calcium-activated protease possibly involved in myofibrillar protein turnover. Isolation of a low- calcium-requiring form of the protease. Biochem. Biophys. Acta. 659:48.
Dunajski, E. 1979. Texture of fish muscle 10. J. Texture studies. 10: 318.
Ebashi, S. and Endo, M. 1968. Calcium and muscle contraction. Prog. Biophys. Mol. Biol. 18:123.
Ehira, S. 1976. A biochemical study on the freshness of fish. Bull. Tokai Reg. Fish. Res. Lab. 88:1.
Etherington, D J. 1984. Thecontribution of proteolytic enzymes to postmortem changes in muscle. J. Anim. Sci. 59:1644.
Fraser, D. I., Dingle, J. R., Hines, J. A., Nowlan, S. C. and Dyer, W. J. 1967. Nucletide degradation, monitored by thin-layer chromatography, and associated postmortem changes in relexed cod muscle. J. Fish Res. Bd. Can. 23:1837.
Fujimaki, M. and Kojo, K. 1953. Handling effect upon biochemical changes in the fish muscle immediately after catch-Ⅱ. Changes of acid-soluble phosphorus compounds of frigate mackerel muscle. Bull. Jpn. Soc. Sci. Fish. 19:499.
Goll, D. E. and Robson, R. M. H. 1977. Muscle protein. In ”Food protein. Whitaker, J. R. and Tannenbaum, S. R. (Ed.) AVI Publishing Co., Westport, Connecticut. U. S. A.
Goll, D. E., Otsuka, Y., Nagainis, P. A., Shannon, J. D., Sathe, S. K. and Muguruma, M. 1983. Role of muscle proteinases in maintenance of muscle integrity and mass. J. Food Biochem. 7:137.
Gomez-guillen, M.C., Montero, P., Hurtado, O., Borderfas, A. J. 2000. Biological characteristucs affect the quality of farmed atlantic salmon and smoked muscle.Food Chemistry and Toxicology. 65(1):53.
Gordon, A. M., Huxley, A. F. and Julian, F. J. 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J. Physiol. (London) 184:170.
Got, F., Culioli, J., Berge P., Vignon, X., Astruc, T., Quideau, J.M., Lethiecq M. 1999.Eff ects of high-intensity high-frequency ultrasound on ageing rate, ultrastructure and some physico-chemical propertis of beef .Meat Sci. 51:35.
Gram, L., Henrik H.1996. Microbiological spoilage of fish and fish products. International J. of Food Microbiology. 33:121.
Hamm, R., 1975. Water-holding capacity of meat. Butterworths 321., London.
Hamm, R. 1981. Postmortem changes in muscle affecting the quality of comminuted meat products. In “Developments in Meat Science-2,” Lawrie, R. (Ed.). Appl. Sci. Pub., Inc., London.
Hatae, K., Tamari, S., Miyanaga, K. and Matsumoto, J. J. 1985. Species difference and changes in the physical properties of fish muscle as freshness decreases. Bull. Jap. Soc. Sci. Fish. 51:1155.
Hirose, K. and Wakabayashit, T. 1993. Stuctural change of crossbridges of rabbit skeletal muscle during isometric contraction. J. Muscle Res Cell Motil 14(4):432.
Iwamoto, M., Ioka, H., Saito, M. and Yamanaka, H. 1985. Relation between rigor mortis of sea bream and storage temperatures. Bull. Jap. Soc. Sci. Fish. 51(3):443.
Iwamoto, M. and Yamanaka, H. 1986. Remarkable differences in rigor morties between wild and cultured specimens of the red bream pagrus major. Bull. Jap. Soc. Sci. Fish. 52(2):275.
Iwamoto, M., Yamanaka, H., Watabe, S. and Hashimoto, K. 1987. Effect of storage temperature on rigor-mortis and ATP degradation in plaice Paralichthys olivaceus muscle. J. Food Sci. 52:1514.
Iwamoto, M., Yamanaka, H., Abe, H., Ushio, H., Watabe, S. and Hashimoto, K. 1988. ATP and creatine phosphate breakdown in spiked plaice muscle during storage, and activities of some enzymes involved. J. Food Sci. 53:1662.
Iwamoto, M., Yamanaka, H., Watabe, S. and Hashimoto, K. 1990a. Rigor-mortis progress and Its Temperature-dependency in Several Marine Fishes. Nippon Suisan Gakkaishi. 56:93.
Iwamoto, M., Yamanaka, H., Watabe, S. and Hashimoto, K. 1990b. Comparison of rigor-mortis progress between wild and cultured plaices. Nippon Suisan Gakkaishi. 56:101.
Jerrett, A.R., Law, R.A., Holland, A.J., Cleaver, S.E. and Ford, S.C. 2000. Optimum post-mortem chilled storage temperature for summer and winter acclimated, rested, Chinook Salmon(Oncorhynchus tshawytscha) white muscle. J. of Food Sci. 65(5):750.
Jiang, ST., Wang, JH., Chen, CS. and Su, JC. 1995. Substrate and calcium effects on the autolysis of tilapia muscle m-calpain. Biosci. Biotech. Biochem. 59:119.
Jiang, ST., Lee, JJ. and Chen, HC. 1996 Proteolysis of actomysin by cathepsins B, L, L-like and X from mackerel . J. Agric. Food Chem. 44:769.
Jones, N. R., Burt, J. R., Murray, J. and Stroud, G. D. 1965. Nucleotides and the analytical approach to the rigor mortis problem. In “The Technology of fish Utilization,” R. Kreuzer (Ed.), p.14 Fishing News Books Lts., London.
Jos, H.J.,Huis, V. 1996. Microbical and biochemical spoilage of food. International J. of Food Microbiology. 33:1.
Jung, S., Ghoul, M. and Lamballerie, M. 2000.Changes in lysosomal enzyme activities and shear values of high pressure treated meat during ageing. Meat Sci.56:239.
Keiko, H., Yoshimatsu, F. and Matsumoto, J. 1984. Discriminative characterization of different texture profiles of various cooked fish muscle. J. Food Sci. 49: 721.
Khan, A. W. and Frey, A. R. 1971. A simple method for following rigor mortis development in beef and poulty meat. Can. Inst. Food Technol. J. 4:139.
Koohmaraie, M., Schollmeyer, J. E. and Dutson, T. R. 1986. Effect of low-calcium requiring calcium activated factor on myofibrils under varying pH and temperature conditions. J. Food Sci. 51(1):28.
Korhonen, R. W., Lanier, T. C. and Giesbrecht F. 1990. An evaluation of simple method for following rigor development in fish. J. Food Sci. 55(2):346.
Koohmaraie, M. 1992b. Effect of pH, andmeat inhibitors on autolysis and catalytic activity of bovine seletal muscle m-calpain. J. Anim. Sci.70:3071.
Kumano,Y.and Seki, N.1993. Change in α-connectin conttent during storage of iced, frozen and thawed fish muscle. Nippon Suisan Gakkaishi. 59(3):559.
Koohmaraie, M. 1994. Muscle proteinases and meat aging. Meat Sci. 36:93.
Koohmaraie, M., Shackelford, SD. and Wheeler, TL. 1996. Effects of a beta-adrenergic agonist and male sex condition on muscle growth and meat quality of callipyge lambs. J. Anim. Sci.74:70.
Kumano, Y. and Seki, N. 1993. Changes in α-connectin content during storage of iced, frozen, and thawed fish muscles. Nippon Suisan Gakkaishi. 59(3):559.
Lawry, O. H., Rosebriugh, N. T., Farr, A. L. and Randull, R. J. 1951. Protein measurement with folinphenol reagent. J. Biol. Chem. 193:256.
Lee, Y. B. and Rickansurd, D. A. 1978. Effect of temperature on shortening in chicken muscle. J. Food Sci. 43:1613.
Lawrie, R. A., 1991. The eating quality of meat. In ”Meat Science,” Chap. 10. Lawrie, R. A., (Ed.), pp. 199-212. BPCC Wheatons Ltd., London.
Locker, R. H. and Hagyard, C. J. 1963. A cold shortening effect in beef muscles. J. Sci. Fd. Agric. 14:787.
Ma, L. B., Yamanaka, H., Ushio, H. and Watabe, S. 1992. Studies on the mechanism of thaw rigor in carp. Bull. Jap. Soc. Sci. Fish. 58:1535.
Mary K. Cambell.1999. Biochemistry. In ”The metabolism of nitrogen,” Chap. 19. Lawrie, R. A., 3(Ed.), pp. 661-663. BPCC Wheatons Ltd., U.S.A.
Matsumoto, J. J. 1979. Denaturation of fish muscle proteins during frozen storage, In “Proteins at Low Temperature”, (Ed.), pp.205-224. By O. Fennema, ACS. Washington D. C.
Mazorra M.A., Pacheco-Aguilar, R., Dfaz-Rojas E. I. and Lugo-Sanchez M. E. 2000. Postmortem changes in black skipjack muscle during storage in ice.Food Chem. and Toxicology. 65(5):774.
Montero, P. and Borderias, J. 1990. Effect of rigor mortis and ageing on collagen in Trout (Salmo irideus) muscle. J. Sci. Food Agric. 52:141.
Murata, M. and Sakaguchi, M. 1989. The effects of phosphattase treatment of yellowtail muscle extracts and subsequent addition of IMP on flavor intensity. Nippon Suisan Gakkaishi. 55(9):1599.
Mykles, D. L. and Skinner, D. M. 1986. Four Ca2+-dependent proteinase activities isolated from crustacean muscle differ in size, net charge, and sensitity to Ca2+ and inhibitors. J. Biol. Chem. 261:9865.
Nakayama, T., Liu, Da-Jia., and Ooi, A. 1992. Tension change of stressed and unstressed carp muscles in isometric rigor contraction and resolution. Nippon Suisan Gakkaishi. 58:1517.
Newbold, R. P. 1966. Changes associated with rigor mortis. In “The Physiology and Biochemistry of Muscle as a Food,“ Brisky, E. J., Cassens, R. G., and Trautman, J. C. (Ed.). Univ. of Wisconsin Press.
Noguchi, E. 1957. A study on the freshness of fish meat with special reference to the determination of rigor mortis. Bull. Japan Sea Reg. Fish. Res. Lab. 5:61.
Nonaka, J., Hashimoto, Y., Takashi, T. and Suyama, M. 1976. The change of mortis of fishand shellfish. In “New Marine Food Science“, pp. 52-75. Koseisha Koseikaku Co., Tokyo, Japan.
Oka, H., Ohno, K. and Ninomiya, J. 1990. Changes in texture during cold storage of cultured yellowtail meat prepared by different killing methods. Nippon Suisan Gakkaishi. 56:1673.
Okitani, A., Kodama, S., Seigemori, S., Ito, T., Nishimura, T., Fukazawa, T. and Kato, H. 1983. The relationship between an optimal condition for cooking of carp “arai” (feesh muscle stiffened by dipping in water) and heat contracture. Bull. Jpn. Soc. Sci. Fish. 49:907.
Olson, D. G., Parrish, F. C. J., Dayton, W. R. and Goll, D. E. 1977. Effect of postmortem storage and calcium activated factor on the myofibrillar proteins of bovine skeletal muscle. J. Food Sci. 42:117.
Pate, E .F. and Brokaw, C. J. 1980. Cross-bridge behavior in rigor muscle. Biophys. Struct. Mech. 7:51.
Penny, I. F. 1980. The enzymology of conditioning. In “Developments in Meat Science” (R. Lawrie, ed.), Vol. 1, p. 232. Appl. Sci. Publ., London.
Peterson, G. L. 1979. Review of the folinb phenol protein quantitation method of lowry, rosebrough, farr and randal. Anal. Biochem. 100:201.
Poulter, F. G., Curran, C. A. and Disney, J. C. 1981. Chill storge of tropical and temperate water fish-differences and similarities. In “Advances in Technology in the Chilling, Freezing, Processing, Storage and Transport of Fish. Especially Underutilized Species.” Ⅲ. International Institute of Refrigeration, Paris.
Sato, B., Sasaki, Y. and Abe, S. 1978. Developing technology of utilization of small pelagic fish. pp. 105-116, Fisheries Agency, Japan.
Sato, K., Ohashi, C., and Kawabata, M. 1991. TypeⅤ collagen in Trout (Salmo gairdneri) muscle and it’s solubility change during chilled storage of muscle. J. Agric. Food Chem. 39:1222.
Sato, K., Ando, M. Kubota, S., Origasa, O., Kawase, H., Toyohara, H., Sakaguchi, M., Nakagawa, T., Makinodan, Y., Ohtsuki, K. and Kawabata, M. 1997. Invovement of type Ⅴ collagen in softening of fish muscle during short-term chilled storage. American Chemical Society. 43:348.
Shann-Tzong J. 1998. Contribution of muscle proteinases to meat tenderization Proceedings of National Sci. Council, ROC part B: Life Sci. 22(3):97.
Shann-Tzong J.2000. Effect of protenases on the meat texture and seafood quality. Food Sci. and Agricultural Chem. 2(2):55.
Sigholt, T., Erikson, U., Rustad, T., Johansen, S., Nordtvedt, T. S. and Seland, A. 1997. Handling stress and storage temperature affect meat quality of farmed-raised Atlantic salmon (Salmo salar) J. Food Sci. 62:898.
Suyama, M. and Konosu, A. 1987. Postmortem changes of fish and shellfish. In “Marine Food Science (Suisan Shokuhin-Gaku),” pp.93-107. Koseisha, Koseikaku, Tokyo.
Suzuki, T. 1981. Characteristics of fish meat and fish protein. In “Fish and Krill Protein”, Processing technology. p. 1-56. Appl. Sci. Publishers Ltd., London.
Szczesnik, A. S. 1972. In “Developments in Meat Science-4”,. pp. 251-252. Elsevier Sci. Publishers Ltd., England.
Takahashi, K., Hattori, A., Tatsumi, R. and Takai, K. 1992. Calcium-induced splitting of connectin filament into β-connectin and 1,200-KDa subfragment. J. Biochem. 111:778.
Takahashi, K. Hattori, A. and Kuroyanagi H. 1995. Relationship between the translocation of Paratropomyosin and the restoration of rigor-shortened sarcomeres during post-mortem ageing of meat —amolecular mechanism of meat tenderization.Meat Sci. 40:413.
Takahashi, K. 1996. Structural weakening of skeletal muscle tissue during post-mortem ageing of meat: the non-enzymatic mechanism of meat tenderization. Meat Sci. 43:S67.
Toyohara, H. and Shimizu, Y., 1988. Relation of rigor mortis of fish body and texture of the muscle. Nippon Suisan Gakkaishi. 54:1795.
.Toyohara, H., Kinoshita, M. and Shimizu, Y. 1990a. Proteolytic degradation of threadfin-bream meat gel. J. Food. Sci. 55(1):159.
Toyohara, H.,Sakata, T., Yamashita, K. Kinoshita, M. and Shimizu, Y. 1990b. Degradation of oval-filefish meat gel caused by myofibrillar proteinase. J. Food. Sci. 55(2):364.
Tsuchiya, H., Kita, S., and Seki, N. 1992. Postmortem changes in α-actinin and connectin in carp and rainbow trout muscle. Nippon Suisan Gakkaishi. 58:794.
Ushio, H. and Watabe, S. 1994. Carp sarcoplasmic reticulum changes due to heat treatment. J. Food Sci. 59:80.
Watabe, S., Ushio, H., Iwanoto, M., Yamanaka, H., and Hashimoto, K. 1989. Temperature-dependency of rigor-mortis of fish muscle : Myofibrillar Mg-ATP activity and Ca uptake by sacroplasmic reticulum. J. Food Sci. 54:1107.
Watabe, S., Hwang, G. C., Ushino, H., Yamanaka, H., Hatae, K. and Hashimoto, K. 1991. Short thermal treatment effect on carp myofibril and sarcoplasmic reticulum: possible mechanisms in rigor mortis acceleration by arai treatmeat. J. Food Sci. 56:653.
Whiting, R. C. 1980. Calaium uptake by bovine muscle mitochondria and sarcoplasmic reticulum. J. Food Sci. 45:288.
Williams, J. R. and Harrisop, D. L. 1978. Relationship of hydroxyproline solubilized to tenderness of bovine muscle. J. Food Sci. 43:463.
Yamada, K., Harada, K., Kawabara, T., Itoh, R. and Tsukamoto, S. 1983. Comparative rates of ATP degradation in rested and exhausted young yellowtail Seriola quinqueradiata in relation to rigor mortis. J. Shimonoseki Univ. Fish. 31:59.
Yamanaka, H., Nakagawasai, T., Kikuchi, T., and Amano, K. 1978. Remarkable difference between rigor mortis and thaw rigor. Bull. Jap. Soc. Sci. Fish. 44:1123.
Yamashita, M. and Konagaya, S. 1991. Hydrolytic action of salmon cathepsins B and L to muscle structure proteins in respect of muscle softening. Nippon Suisan Gakkaishi. 57:1917.
Zhigang, L., Xufu, Y., Yongliang, Z., Xuemei., P. and Qiongying, L. 1998. Observations on rat’s muscle at various postmortem intervals by scanning electron microscopy. J. West China Univ. Med. Sci. 29(3):323.
Ziegler, G. R. and Acton, J. C. 1984. Mechanisms of gel formation by proteins of muscle tissue. Food Technol. 38:77.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top