跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳麗霞
研究生(外文):Li - Hsia Chen
論文名稱:二氧化氯作為殺菌劑之特性及其在水產品之應用研究
論文名稱(外文):The antimicrobial activities of chlorine dioxide and its application on seafoods
指導教授:蕭泉源蕭泉源引用關係
指導教授(外文):Shiau, C. Y.
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系碩士在職專班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:71
中文關鍵詞:二氧化氯游離態二氧化氯酸化
外文關鍵詞:chlorine dioxidefree chlorine dioxideacidified
相關次數:
  • 被引用被引用:13
  • 點閱點閱:964
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
游離態二氧化氯( free ClO2)的釋放速率主要由亞氯酸鹽的純度與濃度及不同酸之酸度強弱、反應時間及溫度而不同,以乳酸活化,在pH 2.0時釋放free ClO2之速率最快;pH 2.5在5小時可達到較高的活化度。而檸檬酸在pH 2.5下需要36小時才能達到和乳酸一樣之最高的活化度。偏磷酸鈉則從第3小時至48小時之變化都呈現平緩上升的趨勢。可知不同初始的pH值,free ClO2產生之速率就不同,pH值愈低,free ClO2釋解速度愈快。
溫度亦影響free ClO2之釋放速率,以乳酸活化在60℃經24小時作用,幾乎已無Free ClO2;以檸檬酸活化也有相似的情形;而偏磷酸鈉受到溫度的影響較少,顯示以偏磷酸鈉活化可延長ClO2的活性及增加ClO2對溫度的穩定性,而使ClO2同時具殺菌及抑菌作用。
三種酸劑活化ClO2後,再以碳酸鈉中和pH值至6.5~7.0,在碳酸鈉添加後其Free ClO2濃度平均都降低21~25%,而隨著放置時間的增加,Free ClO2濃度愈低。顯示中和後的ClO2活化液只適用於初始狀態的殺菌,不可作為長效之抑菌劑使用。
以各種不同濃度ClO2處理鱸魚與海鱺肉片之殺菌及保鮮的效果,結果顯示ClO2處理對魚片確實有殺菌效果,且ClO2不管有無酸化對魚片皆具有殺菌能力,隨著濃度的提高,可顯著的提高殺菌力。而酸化ClO2較穩定ClO2殺菌效果佳,因此如果使用穩定ClO2濃度必須比酸化ClO2高。
經不同ClO2處理過之魚片在6℃貯存,所有處理組在3天內的貯存期間,總生菌數(TPC)都明顯較對照組低,貯存到第7天,以100 ppm酸化ClO2處理組抑菌效果佳;而以20 ppm酸化ClO2處理,或是100 ppm穩定ClO2單獨處理時,殺菌效果較不明顯,但兩者的搭配使用卻能有效增強殺菌及抑菌效果,尤其在貯存期間之抑菌效果更為明顯,因此酸化及穩定型ClO2的搭配使用,提供了新的ClO2使用方法,可改善ClO2使用在貯存上的時效性缺點。而大腸桿菌群(coliforms)在經7天的貯藏中,只有200 ppm穩定ClO2、100 ppm酸化ClO2及20 ppm酸化ClO2搭配100 ppm穩定ClO2等三組仍符合生食用之衛生標準。然而不管水產品新鮮與否,以適當的ClO2濃度處理,均能有效而顯著的降低大腸桿菌群數,進而大幅減少食物中毒的發生機會。
因此ClO2可使用於各類型的水產品來有效提升其安全性,而以正確的方式使用ClO2可大幅增加ClO2的殺菌活性,經ClO2處理過之水產品的品質可以確保、貯存期限可以延長,不但提高經濟效益,同時也可增加水產品的安全性,達到衛生安全的品質要求。
ABSTRACT
The release of free ClO2 by acidification of sodium chlorite (activation of ClO2) depends greatly on the type of GRAS acids employed, the ionic strength of the acid, the reaction time and temperature. The release of free ClO2 using lactic acid reaches a maximal level in 3 hours when pH is 2.0, while it takes 5 hours to reach the same maximal activation at pH 2.5. Citric acid, on the other hand, takes 36 hours to release similar concentration of free ClO2 as lactic acid does at pH 2.5. Acidic meta- polyphosphate salts show increasing level of ClO2 activation within a 48-hour time period. Therefore, the activation of ClO2 is partially determined by the resulting pH value or the amount of acids added. In general, the lower the pH value is, the faster the free ClO2 will be released.
The reaction temperature will change the releasing rate of free ClO2. Activation of ClO2 by lactic acid at 60oC shows no residual free ClO2 in the solution at 24 hours after the addition of acid, while citric acid, at the similar condition, gives only 67% reduction of free ClO2 as compared to the initial level of free ClO2. Acidic metapolyphosphate salts is more inert to the temperature changes where, at 60oC, 14% and 34% reduction are respectively observed at 24 and 48 hours. The unique nature of acidic metapolyphosphate salts will extend the functionality and application of ClO2.
Neutralization of acid-activated ClO2 by sodium bicarbonate to a pH between 6.5 and 7.0 will result in a 21-25% reduction of free ClO2 level as compared to the control without neutralization. Additional reduction in free ClO2 concentration (50-60%) occurs at 12 hours after the neutralization suggesting that neutralization of activated ClO2 will result in a reduction of free ClO2 concentration. Therefore, neutralized ClO2 is not suitable for long-term antimicrobial application.
Application of ClO2 in Japanese seabass and cobia fillets shows that ClO2 is significantly effective in reducing the bacteria counts. Regardless of the addition of acids, the higher concentration of total or free ClO2 will give a better antimicrobial activity. Since the acidified or activated ClO2 is generally more effective than the stabilized ClO2 (no acid added), higher concentration of stabilized ClO2 is needed to reach a similar antimicrobial activity as a lower concentration of activated ClO2.
The ClO2-treated fish fillet shows a significant lower total plate count (TPC) than the non-treated control when stored at 6oC for 3 days, while treatment with 100 ppm acidified ClO2 gives a lowest TPC count among all tested concentrations after a 7-day storage period. The fish fillets treated separately with either 20 ppm acidified ClO2 or 100 ppm of stabilized ClO2 do not show significantly reduced TPC counts. However, the combination of the above two ClO2 concentrations synergistically enhances the antimicrobial activity of ClO2 and its effectiveness in long-term storage. The combination of acidified and stabilized ClO2 provides a new application direction for ClO2 and greatly improves the disadvantage of ClO2 in its duration of antimicrobial activity. The ClO2, at the concentrations including 200 ppm stabilized ClO2, 100 ppm acidified ClO2 and the combination of 100 ppm stabilized and 20 ppm acidified ClO2, will maintain the coliforms counts in fish fillets in compliance with the hygiene standards for seafood sashimi(raw fish) even after 7-day storage at 6oC. Therefore, regardless of the sanitary status of the seafood, processing with optimal concentration of ClO2 will significantly and effectively reduce coliforms counts and greatly reduce the risk of food poisoning.
ClO2 can be applied in almost all types of fishery products to improve the safety of the seafood and comply with the standards in hygiene and quality. The proper use of ClO2 will greatly enhance its antimicrobial activity, appreciate the quality of the treated seafood, extend the shelf-life and increase the economical efficacy.
目 錄
頁次
中文摘要….…………………………………….…………………….. I
英文摘要…………….………………………………….…………….. III
目錄…………………………………………………………………….. Ⅴ
壹、前言………………………………………..…….…..……...……. 1
貳、文獻整理…………………….…….……..…………………....… 4
一、二氧化氯的基本性質……………....…..…………..…….… 4
(一)二氧化氯的歷史.…….……………..……………………….. 4
(二)二氧化氯物化特性……..….….……….....…………………. 5
(三)二氧化氯的製造方法…..….….……….....…………………. 6
(四)二氧化氯在水中的反應.……..….….…....…………………. 7
二、二氧化氯的殺菌機制……….…………...….….....…….….. 9
(一)殺菌劑之殺菌方法及作用過程……...……………….…….. 9
(二)二氧化氯殺菌原理….….….……….....………….…………. 10
三、二氧化氯與其他消毒劑之比較..………..……………....… 10
(一)比較消毒劑優劣的幾項標準…….…….………………….... 10
(二)各種消毒劑效果之比較…………..….….……….............…. 11
四、二氧化氯之應用………..…………………....…………..…… 14
(一)淨水工程……………………...….……………...….….……. 14
(二)食品上的應用….….………...…………….………..…….…. 16
五、二氧化氯之毒性………..………….………….…..……….… 18
(一)毒性調查研究………………...….……………...….….……. 18
(二)毒理學………….….………...…………….………..…….…. 18
參、材料與方法….………………...……….…..……………....…… 20
一、實驗項目與材料….………………..…………………..…..… 20
(一)實驗材料……………………………………..………..…...... 20
(二)實驗儀器……………………………………………...…..…. 21
(三)實驗項目……………………………………….…………..... 21
二、分析方法……………………….……….………..……………… 25
(一)Total ClO2檢測…..……………………….………..………... 25
(二)Free ClO2檢測.….….……………………..……….....……... 25
(三)魚肉pH的測定….…...……………………..…………..…... 26
(四)揮發性鹽基態氮…….…………………..………..…………. 26
(五)總生菌數……...…………………………………...………… 27
(六)大腸桿菌…………...………………………...……………… 27
(七)大腸桿菌群……..……………...………….………………… 27
(八)腸炎弧菌………..……………...………….………………… 28
(九)統計分析………..……………...………….………………… 28
肆、結果與討論.……………………………...…..………………….... 29
一、二氧化氯檢測方法之探討……….….….………….………. 29
二、不同酸劑酸化二氧化氯之活性比較….……….…………. 30
三、溫度對酸化二氧化氯活性之影響…….………….………. 32
四、碳酸鈉中和酸化二氧化氯對其活性之影響…...…..…… 33
五、ClO2處理對魚片之殺菌與保鮮效果…………….………. 34
(一)不同ClO2濃度對魚片之殺菌效果……….………………… 34
(二)ClO2處理魚片在貯存期間品質衛生之變化.………….…… 35
伍、結論………………………………………...……………..….…… 40
陸、參考文獻……………………………..……..………………...…… 41
柒、表……………………………………………..……………...……. 49
捌、圖……………………………………..……………………….…… 59
陸、參考文獻
王啟文、楊秀芬、林永浩、朱興華,1994,柔濕巾抗菌防臭加工之研究。華岡紡織期刊,1(3):69-74。
中國食品添加劑生產應用工業協會,1996,中國輕工業出版社。中國上海。
李慶毅,1997,以二氧化氯為替代消毒劑時小分子有機物之反應探討。國立中興大學環境工程學研究所碩士學位論文,台中市。
吳詩岳、林祐全,2001,差異小、效果大。化工技術,9(7):285-293。
張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文,1996,食品化學。華書園出版社,pp.318-343。
張禎祐,2000,以二氧化氯為替代消毒劑之副產物生成與控制研究。國立中興大學環境工程學研究所博士學位論文,台中市。
曾迪華、應堅聖,1986,自來水中三鹵甲烷處理技術之回顧與評估。中華民國自來水協會第三屆給水技術研討會論文集,pp.147-164。
蔡清讚,1988,醫院廢水中微生物之消毒之懸浮固體中之消毒動力學。國立台灣大學土木工程學研究所博士學位論文,台北市。
許勝聖,1996,以二氧化氯為替代消毒劑時其生成控制及消毒效率之研究。國立中興大學環境工程學研究所碩士學位論文,台中市。
Aieta, E. M. and J. D. Berg. 1986. A review of chlorine dioxide in drinking water treatment. J. AWWA. 78(6): 62-73.
Chen, I. H., T. S. Huang, J. Kim, D. E. Conner, S. J. Weese, F. M. Woods and C. I. Wei. 2000. The bactericidal effect of chlorine dioxide against E. coli O157: H7, Listeria monocytogenes, and Salmonella spp. inoculated on strawberries, cucumbers, and cantaloupes. Institute of Food Technology Annual Meeting.
Cobb, B. F., I. Aoaniz and C. A. Thomson. 1973. Biochemical and microbial studies on shrimp: volatile nitrogen and amino acid analysis. J. Food Sci. 38: 341-347.
Craun, G. F., R. T. Bull, R. M. Clark, J. Doull, W. Grabow, G. M. Marsh, D. A. Okun, S. Regli, M. D. Sobsey and J. M. Symons. 1994. Balancing chemical and microbial risks of drinking water disinfection, part I. benfits and potential risks. J. Water SRT-Aqua. 43(4): 192-199.
Cutter, C. N. and W. J. Dorsa. 1995. Chlorine dioxide spray washes for reducing fecal contamination on beef. J. Food Prot. 58: 1294-1296.
FDA. 1998. “Bacteriological Analytical Manual” 8th ed. Food & Drug Administration, Gaithersburg, MD.
Federal Register. 1995. 60(42), 1189921, CFR Part 173, March 3.
Food Chemical News. 1994. April 18. Vol. 36.pp.44-45. CRC Press, Inc., Washington. DC.
Food Chemical News. 1995. March 13. Vol. 37.pp.53-54. CRC Press, Inc., Washington. DC.
Gates, D. 1997. Personal communication. Vulcan Chemical Technologies, Inc., Sacramento, Calif.
Geo Clifford White. 1975. Handbook of chlorination. Second Edition. New York.
Gordon, G., R. G. Kieffer and D. H. Rosenblatt. 1972. The histortry of chlorine dioxide. Progr. Inorg. Chem. 15:201~286.
Haddon, W. F., R. G. Binder, R. Y. Wong, L. A. Harden, R. E. Wilson, M. Benson and K. L. Stevens. 1996. Potent bacterial mutagens produced by chlorination of simulated poultry chiller water. J. Agric. Food Chem. 44:256-263.
Hoehn, R.C., 1993. "Key lssues in chlorine dioxide use in water treatment," Proc, of CMA, USEPA & AWWARF 2nd Intl. Symp., Houston, Tex., May.
Holluta T. 1963. Das ozone in der waserchemie. GWF. 104:1261.
Hopf W. 1964. Fortschritte in der wasseraufbereitung. Tech Forsch. 15(4):49.
Katz, J. 1980. Ozone and chlorine dioxide technology for disinfection of drinking water. Noyes Data Corp., NJ.
Katz, A. and N. Narkis. 1994. Disinfection of effluent by combinations of equal doses of chlorine dioxide and chlorine added simultaneously over arying contact times. Water Res. 28(10): 2133-2138.
Kim, J. M., W. X. Du, W. S. Otwell, M. R. Marshall and C. I. Wei. 1998. Nutrients in salmon and red grouper fillets as affected by chlorine dioxide (ClO2) treatment. J. Food Sci. 63: 629-633.
Kim, J. M., T. S. Huang, M. R. Marshall and C. I. Wei. 1999. Chlorine dioxide treatment of seafoods to reduce bacterial loads. J. Food Sci. 64: 1089-1093.
Langlais B., A. Reckhow and R. B. Deborch. 1991. Ozone in water treatment application and engineering. Lewis Publishers, Inc.
Lin, W. F., T. S. Huang, J. A. Comell, C. M. Lin and C. I. Wei. 1996. Bactericidal activity of aqueous chlorine and chlorine dioxide solutions in a fish model system. J. Food Sci. 61: 1030-1034.
Masschelein W. J. 1979. Chlorine dioxide: Chemistry and environment impact of oxychorine compounds. Ann Arbor Science. Ann Anbor, MI.
Michael G. E., R. K. Miday, J. P. Bercz, R. G. Miller, D. G. Greathouse, D. F. Kraemer and J. B. Lucas. 1981. Chlorine dioxide water disinfection: a prospective epidemiology study. 36(1): 20-27.
Moore G. S., E. J. Calabrese and S. C. Ho. 1980. Groips at potentially high risk from chlorine dioxide treated water. 4(2-3):465-470.
Ralph, N. C., A. U. Mark and J. W. Paul. 1984. Use of chlorine dioxide for controlling microorganisms during the handling and storage of fresh cucumbers. J. Food Sci. 49: 396-401.
Richardson, S. D. 1998. Drinking water disinfection byproducts. In "The Encyclopedia of Environmental Analysis & Remediation," ed. R. A. Meyers, Vol. 3, pp. 1398-1421. John Wiley & Sons, New York.
Richardson, S. D., A. D. Thrustonjr., T. V. Caughran., T. W. Collette., K. S. Patterson and B. W. Lykinsjr. 1998. Chemical by-products of chlorine and alternative disinfectants. Food Technology. 52(4):58-61.
Ringer, W. C., and S. J. Campbell. 1955. Use of chlorine dioxide for alage control at Philadelphia. J. AWWA. 47:740.
Ronsivalli L. J. and E. R. Vieira. 1991. Elementary food science. Pp58-76. Van Nostrand Reinhold. New York. U.S.A.
Schenk P. 1962. Die wasseraufbereitungsanlage des waserwerkes duesseldorf-Am staad. GWF. 103:791.
Sconce, J. S. 1962. Chlorine: Its Manufacture, Properties and Use, Reinhold, New York. U.S.A.
Singer, P. C. and S. D. Chang. 1989. Correlation between trihalomethanes and total organic halides formed during water treatment. J. AWWA. 81(8): 151-157.
Stevens, A. A., C. J. Slocum, D. R. Seeger and G. G. Robeck. 1976. Chlorination of organics in drinking water. In R. L. Jolley, Ed., Water chlorination: Environmental Impact and Health Effects. 1: 74-104.
Stumm W. 1958. Ozone as a disinfectnant for water and sewage. J. Boston Soc. Civ. Eng. 45(1):68.
Susan, D. F. and D. K. Gerard. 1995. Chlorine dioxide: problems of analysis. Water Supply. 13(2): 83-92.
Svoboda, D. J. and L. E. Schwerdt. 1977. Chlorine dioxide spray process for chilling meat carcasses. U-S-patent no. 4,021,585.
Symons, J. M., J. K. Carswell, R. M. Clark, P. Dorsev, E. E. Geldreich, W. P. Heffernan, J. C. Hoff, O. T. Love, L. J. McCabe and A. A. Stevens. 1978. Ozone, chlorine dioxide and chloamines as alternatives to chlorine for disinfection of drinking water. In Water Chlorination: Environmental Impact and Health Effects. R.L. Jollv. H. Gorchev, and D.H. Hamilton (Ed.), pp. 555-560. Vol. 2. Ann Arbor Science Publishers. Ann Arbor. MI.
Thiessen, G. P., W. R. Usbome and H. L. Orr. 1984. The efficacy of chlorine dioxide in controlling Salmonella contamination and its effect on product quality of chicken broiler carcasses. Poult. Sci. 63: 647-653.
Tsai. L. S., R. Higby and J. Schade. 1995. Disinfection of poultry chiller water with chlorine dioxide: consumption and byproduct formation. J. Agric. Food Chem. 43: 2768-2773.
Tsai, L. S., R. Wilson and V. Randall. 1997. Mutagenicity of poultry chiller water treated with either chlorine dioxide or chlorine. J. Agric. Food Chem. 45: 2267-2272.
Watabe, S., M. Kamal, and K. Hashimoto. 1991. Postmortem changes in ATP, creatine phosphate, and lactate in sardine muscle. J. Food Sci. 56:151-153锛.
White, G. C. 1992. The handbook of chlorination and alternative disinfectants . 3rd ed., Van Nostrand Reinhold Company, New York, pp.150-151.
Zhang, S. and J. M. Farber. 1996. The effects of various disinfectants against Listens monocytogenes on freshcut vegetables. Food Microbiol. 13:311-321.
Zika, R. G., C. A. Moore, L. T. Gidel and W. J. Cooper. ”Sunlight- Induced Photodecomposition of chlorine dioxide,“ water chlorination, environmental impact and health effect, vol. 5, C. R. L. Jolley et al 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 33.陳志遠,「行動IP網路四大應用」,網路通訊雜誌,63-67頁,民國91年1月。
2. 29.林益山,「邁向成功的行動電子商務」,網路通訊雜誌,25-29頁,民國90年7月。
3. 28.潘啟銘,「易利信著手打造行動網路新世界」,網路通訊雜誌,2-4頁,民國90年3月。
4. 35.倪國瑋,「當莎莉碰到哈利 當無線通訊碰到網際網路時」,通訊雜誌,50-53頁,民國90年6月。
5. 32.蘇建元,「我國無線通訊產業回顧與展望」,通訊雜誌,20-26頁,民國91年2月。
6. 31.許績偉,「以價值鏈強化行動服務業」,通訊雜誌,34-38頁,民國91年2月。
7. 30.朗訊科技,「無線網際網路的領航者-GPRS」,通訊雜誌,100-104頁,民國90年7月。
8. 27.朗訊科技,「3G行動通訊之無線接取技術」,通訊雜誌,40-45頁,民國90年6月。
9. 26.陳志遠,「IP網路帶著走」,網路通訊雜誌,38-44頁,民國90年12月。
10. 25.酈怡德,「寬頻、無線、IDC 產業不可抵擋的驅動力」,網路通訊雜誌,78-81頁,民國90年5月。
11. 24.葉恆芬,「美國無線網際網路市場現況」,網路通訊雜誌,82-87頁,民國90年5月。
12. 23.禹帆,「激烈競爭的3G行動通訊標準」,網路通訊雜誌,32-37頁,民國90年1月。
13. 22.禹帆,「第三代行動通訊技術與應用」,網路通訊雜誌,106-112頁,民國90年3月。
14. 21.李驥,「行動通訊加值服務產業三元市場」,通訊雜誌,105-109頁,民國90年12月。
15. 20.北電網絡,「固定與行動網路的聚合」,通訊雜誌,46-49頁,民國90年6月。