跳到主要內容

臺灣博碩士論文加值系統

(3.238.98.39) 您好!臺灣時間:2022/09/26 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖俊清
研究生(外文):Jun Chin Liao
論文名稱:多元醇對乳清蛋白膠體品質之影響
論文名稱(外文):Effects of Polyols on the Gelling Characteristics of Whey Protein Concentrates
指導教授:張正明張正明引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系碩士在職專班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:66
中文關鍵詞:多元醇乳清蛋白膠體
外文關鍵詞:PolyolsWhey Protein ConcentratesGel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:407
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乳清蛋白(WPC)為優質蛋白質,在食品加工應用方面,可使用於食品凝膠及成膜製程上。但因乳清蛋白本身親水分散性差,是以本研究設計,利用四種多元醇(山梨醇、甘油、丙二醇及異丙醇)之疏水性及醇基數的不同,添加入乳清蛋白懸浮液中,以研究多元醇對乳清蛋白凝膠能力影響,並由這一個模式(Model)的添加劑效應中,了解多元醇的角色,提供作為配方選擇的依據。
添加疏水性較強的丙二醇及異丙醇不但會使乳清蛋白較易分散於水中,甚且會造成常溫凝膠;須以控制速率緩慢添加此二高疏水性多元醇,方可改善常溫凝膠現象。
添加丙二醇會降低乳清蛋白懸浮液的變性溫度,及降低凝膠點,令系統的穿破變形度顯著變大,膠強度得以充份發揮。如分子量近似,但疏水性不同的甘油及丙二醇引發膠體的穿破變形度,以丙二醇明顯增加;以比丙二醇疏水性更強的異丙醇添加時,異丙醇誘發的乳清蛋白膠體穿破變形度更高。甚者,疏水性的丙二醇更因參與凝膠架穚和修飾膠體的功能,使其所需穿破力高於分子量近似的甘油,與分子量較大的山梨醇添加時的穿破力近似。
添加只具醇基的山梨醇,使乳清蛋白的變性溫度上昇,凝膠點上昇,即具醇基的多元醇會保護乳清蛋白,抵抗熱變性。醇基具有參與增加氫鍵架穚的功能,以致六元醇的山梨醇較三元醇的甘油及二元醇的丙二醇產品硬度較大。

Whey protein concentrate (WPC) is one of the most available proteins for food processing. Its poor solubility, however has restricted its utilization. Hence, this research was designed by adding a serious of polyols, namely sorbitol, glycerol, propylene glycol and 2-propanol to understand their effects on improving the solubility of WPC suspension. The model can further provide information regarding to the role of different polyols as the solubility modifiers and their possible mechanisms to modify the gelling behaviors of whey proteins.
The addition propylene glycol or 2-propanol on WPC suspension can induce gel formation even at room temperature which can be prevented by controlling the addition rate.
The effect of increasing gel strength on WPC heat-set gel was depend on the decreasing denatured temperature and gel point of WPC suspension caused by adding hydrophobic-rich propylene glycol. For example, the deformation of WPC heat-set gel added with propylene glycol, which has similar molecular weight to glycerol, was increased. Even more, the deformation value was the biggest when 2-propanol was added in this system. At the same addition ratios, the breaking force of the heat-set gel added with propylene glycol was higher than adding glycerol and close to sorbitol.
Polyols containing multiple hydroxyl groups, such as sorbitol, will increase denatured temperature and gel point. The hardness was induced more by adding sorbitol than glycerol in WPC gel as a result of increased hydrogen bonding in the system.
In inclusion, the model showed that the addition effects of hydrophobic-rich polyols were opposite to hydroxyl-rich polyols. The former is not only a heat-destabilizing agent for WPC suspension which will decrease denatured temperature and gel point of WPC suspension but also a deformation-inducing agent which will increase breaking force and gel strength of heat-set WPC gel. However, the other is not only a heat-protection agent which will increase denatured temperature and gel point of WPC suspension but also a deformation-reducing agent of heat-set WPC gel. The gel strength of heat-set WPC gel increased as a result of especially increased hardness although the deformation will reduce in the system.

中文摘要…………………………………………………Ⅰ
英文摘要…………………………………………………Ⅱ
一、前言…………………………………………………1
二、文獻整理……………………………………………2
1. 蛋白質凝膠機制.. ....................2
2. 蛋白質熱凝膠機制.....................3
3. 原態蛋白質凝集.......................5
4. 蛋白質加熱變性.......................7
5. 蛋白質凝集...........................9
6. 蛋白質凝膠..........................11
三、研究目的.................................14
四、實驗材料方法與流程.......................16
1.原料.......................................16
2.藥品與材料.................................16
3.儀器與設備.................................16
4.方法.......................................17
(1)多元醇快速加入乳清懸浮液法對乳清
蛋白凝膠品質影響.............................17
(2)丙二醇或異丙醇乳清懸浮液慢速加入
凝膠強度測定................................18
(3)示差掃描熱分析儀分析......................19
(4)動態流變儀測定............................20
(5)多元醇混合加入法凝膠強度測定..............20
5. 實驗流程..................................22
五、結果與討論...............................26
1. 具疏水性基多元醇對乳清蛋白質懸浮液
的助溶效果...................................26
2.多元醇對乳清蛋白加熱變性影響...............27
3.多元醇對乳清蛋白流變特性之影響.............29
4. 多元醇添加對乳清蛋白凝膠影響..............33
5.多元醇對乳清蛋白膠體質地特性影響...........37
6.混合多元醇應用於乳清蛋白凝膠...............38
六、結論.....................................40
七、參考文獻.................................42

Aboumahmoud, R. and Savello, P. 1990 Crooslinking of whey protein by transglutaminase. J. Dairy Sci. 73:256.
Bernal, V. and Jelen, P. 1984. Effect of calcium binding on thermal denaturation of bovine -lactalbumin. J. Dairy Sci. 67:2452.
Boye, J. I., Alli, I. and Ismail, A. A. 1997. Use of differential scanning calorimetry and infrared spectroscopy in the study of thermal and structureal stability of -lactalbumin. J. Agric. Food Chem. 45:1116.
Bowland, E. L. and Foegeding, E. A. 1995. Effects of anions on thermally induced whey protein gels. Food Hydrocolloids. 9:47.
Boye, J. I., Ma, C.Y., Ismail, A., Harwalkar, V. R. and Kalab, M. 1997. Molecular and microstructural studies of thermal denaturation and gelation of -lactoglobulins A and B. J. Agric. Food Chem. 45:1608.
Calavia, M. C. and Burgos, J. 1998. Thermal Denaturation of Ovine -lactoglobulin. J. Dairy Sci.81:2572.
Chen, J., Dickinson, E., Langton, M. and Hermanson, A. 2000. Mechanical properties and microstructure of heat-set whey protein emulsion Gels: effect of emulsifiers. Lebens. Wiss. u. Technol. 33:299.
Cooney, M. J., Rosenberg, M. and Shoemaker, C. F. 1993. Rheological properties of whey protein concentrate gels. J. Texture Studies. 24:325.
Dableich, D. G., Senaratne, V. and Francois, S. 1997. Interactions between -lactalbumin and -lactoglobulins in the early stages of heat denaturation. J. Agric. Food Chem. 45:3459.
deWit, J. N. 1990. Thermal stability and functionality of whey proteins. J. Dairy Sci. 73:3602.
deWit, J. N. and Klarenbeek, G. 1984. Effects of various heat treatments on structure and solubility of whey proteins. J. Dairy Sci. 67:2701.
Dicknson, E. and Yamamoto, Y. 1996. Effect of lecithin on the viscoelastic of -lactoglobulin- stabilized emulsion gels. Food Hydrocolloids. 10:301.
Doi, E. 1993. Gels and gelling of globular proteins. Trends Food Sci. Tech. 4:1.
Eleya, M. M. O. and Turgeon, S. L. 2000. The effects of pH on the rheology of -lactoglobulin /-carrageenan mixed gels. Food Hydrocolloids. 14:245.
Fargemand, M., Murray, B. S. and Dickinson, E. 1997. Cross-linking of milk protein with transglutaminase at the oil-water interface. J. Agric. Food Chem. 45:2514.
Fargemand, M., Otte, J. and Qvist, K. B. 1998. Cross-linking of whey proteins by enzymatic oxidation. J. Agric. Chem. 46:1326.
Ferry J. D. 1948. Protein Gels. Adv. Protein Chem. 4:1.
Foegeding, E. A. 1992. Rheological properties of whey protein isolate gels determined by torsional fracture and stress relaxation. J. Texture Studies 23:337.
Foegeding, E. A., Bowland, E. L. and Hardin, C.C. 1995. Factors that determine the fracture and microstructure of globular protein gels. Food Hydrocolloids. 9:237.
Foegeding, E. A.,. Kuhn, P. R. and Hardin, C. C. 1992. Specific divalent cation-induced changes during gelation of -lactoglobulin. J. Agric. Food Chem. 40: 2092.
Harwalkar, V. R. and Ma, C. Y. 1987. Studies of thermal properties of oat globulin by differential scanning calorimeter. J. Food Sci. 52:394.
Hillier R. M. and Cheeseman G. C. 1979. Effect of protease on heat gelation of whey protein isolate J. Dairy Res. 46:113.
Hiseh, Y. L. and Regenstein, J. M. 1992. Modeling protein gelation and application of entropy elasticity to understand protrin gel properties. J. Texture Studies 23:379.
Hoffmann, M. A. M. and van Mil, P. J. J. M. 1997. Heat-induced aggregation of -lactoglobulin: role of the free thiol group and disulfide bonds. J. Agric. Food Chem. 45:2942.
Ju, Z. Y., Hettiarachchy, N. and Kilara, A. 1999. Thermal properties of whey protein aggregates. J. Dairy Sci. 82:1882.
Ju, Z. Y. and Kilara, A. 1998a. Gelation of pH-aggregated whey protein isolate solution induced by heat, protease, calcium salt, and acidulant. J. Agric. Food Chem. 46:1830.
Ju, Z. Y. and Kilara, A. 1998b. Texture properties of cold-set gels induced from heat-denatured whey protein isolates. J. Food Sci. 63:288.
Kitabatake, N. and Doi, E. 1993. Improvement of protein gel by physical and enzymatic by physical and enzymatic treatment. Food Reviews International 9:445.
Kuhn, P. R. and Foegeding E. A. 1991. Mineral salt effects on whey protein gelation. J. Agric. Food chem. 39:1013.
Mangino, M. E. 1984. Physicochemical aspects of whey protein functionality. J. Dairy Sci. 67:2711.
Matsudomi, N., Oshita, T. and Kobayashi, K. 1994. Synergistic interaction between -lactoglobulin and bovine serum albumin in heat-induced gelation. J. Dairy Sci. 77:1487.
Matsudomi, N., Oshita, T., Sasaki, E. and Kobayashi, K. 1992. Enhanced heat-induced gelation of -lactoglobulin by -lactalbumin. Biocsi. Biotech. Biochem. 56:1697.
Matsudomi, N., Oshita, T., Sasaki, E. Kobayashi, K. and Kiesella, E. 1993. -lactalbumin enhances the gelation properties of bovine serum albumin. J. Agric. Food Chem. 41:1053.
Morr, C. V. and Ha, E. Y. W. 1993. Whey protein concentrates and isolates: processing and functional properties. Crit. Rev. Food Sci. Nutri. 33:431
Mulvihill, D. M. and Kinsella, J. E. 1987. Gelation characteristics of whey proteins and -lactoglobulin. Food Tech. 9:102.
Mulvihill, D. M. and Kinsella, J. E. 1988. Gelation of -lactoglobulin: effects of sodium chloride and calcium chloride on the rheological and structural properties of gels. J. Food Sci. 53:231.
Oakenfull, D. 1987. Gelling agents. CRC Crit. Rev. Food Sci. Nutrit. 26:1.
Otte, J. Ju, Z. Y. Fargemand, M., Lomholt, S.B. and Qvist, K. B. 1996. Protease-induced aggregation and gelation of whey proteins. J. Food Sci. 61:911.
Parris, N., Hollar, C. M., Hsieh, A. and Cockley, K. D. 1997. Thermal stability of whey protein concentrate mixture: aggregate formation. J. Dairy Sci. 80:19.
Paulsson, M. and Dejmek, P. 1990. Rheological properties of heat-induced -lactoglobulin gels. J. Dairy Sci. 73:45.
Paulsson, M., Hegg, P. and Castberg, H. B. 1986. Heat-induced gelation of individual whey proteins a dynamic rheological study. J. Food Sci. 51:87.
Prabakaran, S. and Domodaran, S. 1997. Thermal unfolding of -lactoglobulin: characterization of initial unfolding eventd responsible for heat-induced aggregation. J. Agric. Food Chem. 45:4303.
Shimada, K. and Cheftel, J. C. 1989. Sulfhydryl group /disulfide bond interchange reactions during heat-induced gelation of whey protein isolate. J. Agric. Food Chem. 37:161.
Schmidt, R.H., Illingworth, B. L., Deng, J. C. and Cornell, J. A. 1979. Multiple regression and response surface analysis of the effects of calcium chloride and cysteine on heat-induced whey protein gelation. J. Agric. Food Chem. 27:529.
Schmidt, R.H., Packard, V. S. and Morris, H. A. 1984. Effect of processing on whey protein functionality. J. Dairy Sci. 67:2723.
Traore, F. and Meunier, J. 1992. Cross-linking activity of placental F XIIa on whey proteins and caseins. J. Agric. Food Chem. 40:399.
Tropini, V., Lens, J. P., Mulder, W. J. and Silvestre, M. F. 2000. Cross-linking of wheat gluten using a water-soluble carbodiimide. Cereal Chem. 77:333.
Varunsatian, S., Watanabe, K., Hayakawa, S. and Nakamura, R. 1983. Effects of Ca++, Mg++ and Na+ on heat aggregation of whey protein concentrates. J. Food Sci. 48:43.
Verheul, M. and Roefs, S. P. F. M. 1998a. Structure of whey protein gels, studied by permeability, scanning electron microscopy and rheology. Food hydrocolloids. 12:17.
Verheul, M. and Roefs, S. P. F. M. 1998b. Structure of particulate whey protein gels: effect of NaCl concentration, pH, heating temperature, and protein composition. J. Agric. Chem. 46:4909.
Wong, D. W. S., Camirand, W. M. and Pavlath, A. E. 1996. Sructures and functionalities of milk proteins. Crit. Rev. Food Sci. Nutri. 36:807
Zhu H. and Damodaran, S. 1994. Effect of calcium and magnesium ions on aggregation of whey protein isolate and its effect on foaming properties J. Agric Food Chem. 42: 856.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top