(3.215.180.226) 您好!臺灣時間:2021/03/09 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁崇興
研究生(外文):Chung-Hsin Weng
論文名稱:雙鋼管型挫屈束制消能支撐之耐震行為與應用研究
論文名稱(外文):Cyclic Responses of Double-Tube Unbonded Brace Elements and Connections
指導教授:蔡克銓蔡克銓引用關係
指導教授(外文):K.C.Tsai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:217
中文關鍵詞:消能裝置挫屈拘束支撐無粘著支撐斜撐構架耐震設計遲滯行為非線性
外文關鍵詞:energy dissipatorsbuckling restrained braceunbonded bracebraced frameseismic designhysteretic behaviornonlinear
相關次數:
  • 被引用被引用:14
  • 點閱點閱:435
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,相關研究證實含挫屈束制消能支撐之構架(BRBF)在強震下是極有效率的斜撐構架系統,挫屈束制消能支撐(BRB)構件可由各種結構型鋼為主受力元件,其外包覆鋼管混凝土為側撐單元所製作。當支撐承受軸壓,側撐之鋼管混凝土藉由脫層材料降低主受力單元經由摩擦傳遞之軸向力量,但同時須維持側撐單元防止支撐局部或整體撓曲挫屈之束制功能。為減少支撐與主結構接合長度與螺栓使用量,雙T斷面核心雙鋼管型搭接式挫屈束制消能支撐(DTDT)已在近年來發展與測試。本研究目的包括:1)進一步研究更有效率之雙鋼管型挫屈束制消能支撐,2)發展雙鋼管之間繫接設計方法,3)建立A36鋼材消能支撐核心應變對應週期次數或消散能量之疲勞曲線,4)發展雙鋼管型消能支撐與主結構螺栓接合之設計方法。
本研究中,以十支單板單鋼管反復載重測試結果顯示以2mm厚矽膠板作為脫層材料,消能支撐主受力單元之峰值拉力與峰值壓力差值較小,脫層效果較佳。此外,主受力單元分別採用A36鋼材與A572 Grade50鋼材之消能支撐,建議材料應變固化係數Ωh分別為1.5與1.4。額外十支雙板斷面核心雙鋼管型挫屈束制消能支撐(DPDT),其主受力單元使用A36鋼材,以2mm厚矽膠板作為脫層材料,經過遞增振幅反覆載重與等核心應變反覆疲勞載重測試,結果顯示當核心應變達0.02時其應變固化因子高達1.8。試驗結果亦證實本研究所提鋼管繫接之所需勁度與強度計算之可靠信,可將其應用於雙鋼管型挫屈束制消能支撐鋼管繫接之設計與製造。疲勞測試結果證實消能支撐核心應變對應週期次數或消散能量之疲勞曲線,經回歸分析呈現雙對數線性關係。最後,六支兩類不同粗糙程度之消能支撐接合試體,經過反復遞增力量振幅與位移振幅之加載試驗以探討接合滑動阻抗強度,隨後再加載兩組不同低於滑動阻抗強度之反復載重以探討接合之滑動機制。試驗顯示消能支撐接合部份之螺栓設計,可採用鋼結構設計規範中所建議螺栓強度的1.5倍來設計。本研究根據試驗結果建議接合部有效面積Ae之計算方法,以確保接合部份在消能支撐受震過程中保持彈性,並維持消能支撐穩定消能之特性。
In recent years, a number of researches have confirmed that the buckling restrained braced frame (BRBF) is an effective system for severe seismic application. Buckling restrained bracing (BRB) members can be conveniently made from several kinds of structural steel shape encased in steel tube and confined by infill concrete. When the brace is subjected to compressions, an unbond material placed between the core bracing and the concrete infill is required in order to reduce the friction while restrain the bracing from buckling. In order to reduce the length and the number of bolts in the brace-to-gusset connection, the double-tee double-tube (DTDT) unbonded braces have been developed and extensively tested in National Taiwan University in the past few years. The objectives of this research include: 1) further investigating the effectiveness of various types of unbond material, 2) developing guidelines for the design of the restrain tubes as well the tie elements connecting the two tubes, 3) constructing the constant cyclic axial strain versus fatigues cycle or strain energy relationships for the A36 unbonded braces, and 4) providing guidelines for the design of bolted joint for the brace-to-gusset connections.
In this research, a total of ten unbonded braces employing single tube and flat core steel plate details were fabricated and tested cyclically in order to investigate the effectiveness of various kind of unbond material. It is confirmed that the 2-mm thick silicon rubber sheet is most effective in minimizing the variations of peak brace compressive and tensile responses. Test results also suggest that a strain hardening factor of at 1.5 and 1.4 should be considered for the analysis and design of the unbonded braces employing A36 and A572 Grade 50 steels, respectively. Additional ten double-plate double-tube (DPDT) unbonded braces using A36 material for the core element, 2-mm thick silicon rubber sheet for the unbond material were fabricated and tested by applying first cyclically increasing then constant fatiguing strains. Test results also confirm that strain hardening factor can be as high as 1.8 when the steel core peak tensile strain reaches 0.02. Tests confirmed that the proposed strength and stiffness requirements developed for the tie elements between the two tubes can be conveniently applied in the design and construction of the double tubed unbonded braces subjected to large inelastic strain reversals. Test results also confirm that the constant cyclic axial strain versus fatigues cycle or strain energy relationships can be satisfactorily predicted by the log-log linear empirical relationships developed from regression analysis of the fatigue test data. Finally, six DPDT brace to gusset connection specimens incorporating two different levels of roughness at the contacting surface were tested. A set of cyclically increasing forces and displacements was applied to find out the slip load of the bolted joints. Then, two additional sets of similar cyclically increasing forces and displacements but reduced in magnitude subsequently were applied to confirm the cyclically degrading of the slip capacity. This research presents the responses of the bolts and the stiffeners at the brace-to-gusset joints and concludes with the design recommendations for the brace end connections.
誌謝 一
中文摘要 三
英文摘要 四
目錄 五
表目錄 八
圖目錄 一O
照片目錄 一八
第一章 緒論 1
1.1前言 1
1.2研究動機 3
1.3研究目的與內容 3
第二章 挫屈束制消能支撐的基本力學行為與特性 5
2.1挫屈束制消能支撐構架簡介 5
2.2挫屈束制消能支撐的基本力學原理與特性 5
2.2.1挫屈束制消能支撐等效勁度Ke 6
2.2.2消能支撐集中消能段與樓層側位移角之相關探討 8
2.3文獻回顧 10
2.4雙鋼管型挫屈束制消能支撐介紹 16
2.4.1 雙鋼管型與一般型挫屈束制消能支撐之比較 17
2.4.2雙鋼管型消能支撐之鋼管繫接形式與分析設計 18
第三章 試驗計劃 22
3.1試驗計畫 22
3.2試體設計 22
3.2.1一字形斷面系列試體 25
3.2.2雙鋼管型雙板核心斷面系列試體 27
3.2.3消能支撐接合部份試體 29
3.3試體與夾具之製作與組裝過程簡介 31
3.4試驗施力系統 33
3.5量測系統 35
3.6試驗加載歷時與控制方式 36
第四章 試驗過程記錄 38
4.1一字形斷面系列試體 38
4.2雙鋼管型雙板核心斷面系列試體 43
4.3消能支撐接合部份試體 48
第五章 試驗結果與分析 67
5.1概述 67
5.2試體基本材料試驗 67
5.3一字形斷面系列試體 69
5.4雙鋼管型雙板核心斷面系列試體 72
5.4.1試驗與理論等效勁度Ke比較與探討 73
5.4.2消能支撐之疲勞壽命與累積損傷 74
5.4.3消能支撐鋼管繫接試驗結果與理論比較 78
5.5消能支撐接合部份試體 80
5.5.1消能支撐螺栓接合摩擦衰減機制 80
5.5.2消能支撐接合螺栓設計探討與建議 81
5.5.3消能支撐接合有效面積Ae 85
第六章 含雙鋼管型挫屈束制消能支撐構架詳細設計試作例 88
6.1含雙鋼管型挫屈束制消能支撐構架設計流程與細節 88
6.2雙鋼管型挫屈束制消能支撐設計試作例 90
第七章 結論與建議 91
7.1結論 91
7.2建議 93
參考文獻 94
1. Alison Shaw and Kristen Bouma(2000),”Seismic Retrofit of The Marin County Hall of Justice Using Steel Buckling-Restrained Braced Frames.”,SEAOC 2000 CONVENTION.
2. Ando, N. and Takahashi, S. (1991),“A Study on Unbonded Composite Braces Covered with FRP.”, ICCS-3, pp.377~382.
3. Brown, A. P., Aiken, I. D. and Jafarzadeh F. J. (2001),”Buckling Restrained Braces Provide the Key to the Seismic Retrofit of the Wallace F. Bennett Federal Building”, Modern Steel Construction,August,2001.
4. Chen, C. C. , Wang, C. H. and Hwang, T. C.(2001),“Buckling Strength of Buckling Inhibited Braces.”, The 3rd Japan-Korea-Taiwan Joint Seminar on Earthquake Engineering for Building Structures(SEEBUS 2001), November 16~17,2001, Taipei,Taiwan, pp 265~271.
5. Chen, C. C. and Lu, L.W.(1990),“Development and Experimental Invesigation of a Ductile CBF System.”, Proceedings of Fourth U.S. Conference on Earthquake Engineering, May 20-24, Palm Springs, California, Vol. 2, pp 575~584.
6. Clark, P. W., Kasai, K., Aiken, I. D. and Kimura, I.(2000),”Evaluation of Design Methodologies for Structures Incorporating Steel Unbonded Braces for Energy Dissipation”, Proceedings of 12th World Conference on Earthquake Engineering, New Zealand ,#2240.
7. CSI (2000)”SAP2000: Integrated Finite Element Analysis and Design of Structures.”, Computers and Structures Inc., Berkeley, California.
8. Eiichiro SAEKI、Mitsuru SUGISAWA、Tanemi YAMAGUCHI、Haruo MOCHIZUKI and Akira WADA(1995),”A Study on Hysteresis and Hystresis Energy Characteristics of Low Yield Strength Steel.”,日本建築學會構造系論文集第473號 pp. 159 ~ 168.
9. Gil, H. and Yura, J.A. (1999),“Bracing requirement of inelastic columns.”, Journal of Constructional Steel Research 51,1999.
10. Sugisawa, M.,Watanabe, A. and Nakamura, K.(1993)”Buckling Restraint Brace Member.座屈拘束筋かい部材”, Japanese Patent Number: JP5009977.
11. Nakamura, H.、Takeuchi, T.、Maeda, Y.、Nakata, Y.、Sasaki, T.、Iwata, M. and Wada, A.(2000),”Fatigue Properties of Practical-Scale Unbonded Braces.”,NIPPON STEEL TECHNICAL REPORT No.82 pp. 51 ~ 57.
12. Inoue, K., Higasibata, Y. and Inoue, K. (1994), ”Lateral Bracing Criteria of the Composite Braces.”, Proc. ASCE Structures Congress XII , ASCE ,Vol. 1, pp. 152~157.
13. Iwata, M., Kato, T. and Wada, A.(2000),”Buckling-Restrained Braces as Hysteretic Dampers.”, Behaviour of Steel Structures in Seismic Areas, Balkema, Rotterdam, pp.33~38.
14. Kim, J. and Lee, K. (2000),”Optimum Stiffness Ratio of Unbonded Brace Hysteretic Dampers.”, The 2th Seminar on Earthquake Engineering for Building Structures (SEEBUS 2000), October 20-21, Kyoto, Japan, pp.207~216
15. Miner, M. A.(1954),” Cumulative Damage in Fatigue,” J. Appl. Mech, 12, pp.159-164.
16. Morino, S., Kawaguchi, J., Ito, S., Shimokawa, H. (1996),”Hysteretic Behavior of Stiffened Flat-Bar Braces.”, Proceedings of International Conference on Advances in Steel Structures.Dec. 11-14, Hong Kong, Vol. 2, pp 1127~1132.
17. Ove Arup & Partners(2000),“Unbonded Brace Frames Debut at University of California.”, Civil Engineering, April, Vol. 70, Issue 4, pp.18
18. RCSC(2000), “Specification for Structural Joints Using ASTM A325 or A490 Bolts,” Prepared by RCSC Committee 15─Specifications and approved by the Research Council on Structural Connections.
19. Reina, P. and Normile, D. (1997),”Fully Braced for Seismic Survival.”, Engineering News- Records, New York , July 21, Vol. 239 Issue 3, pp 34~36.
20. SAC (1997),” Protocol for Fabrication, Inspection, Testing, and Documentation of Beam-Column Connection Tests and Other Experimental Specimens. Appendix E: Loading Protocol for Stepwise Increasing Cyclic Tests”, SAC Background Document SAC/BD-97/02.
21. Talarico, W. (2000),“The Unbonded Brace, Long Popular in Japan, Makes its American Debut.”, Architectural Record, Feb, Vol. 189, Issue 2, pp.137 (Tech Briefs).
22. Timoshenko, S. P., and Gere, J. M.(1961), ”Theory of Elastic Stability, 2nd Ed.”, McGraw-Hill Book Company. Inc,New York,1961.
23. Topper, T. H., Sandor, B. I., and Morrow, J. (1969), “Cumulative Fatigue Damage under Cyclic Strain Control,” Journal of Materials, Vol. 4, No. 1,189-199.
24. Wada, A., Sacki, E.,Takeuchi, T. and Watanabe, A.(1994)”Development of Unbonded Brace.”, Nippon Steel Corporation, Tokyo, JAPAN.
25. Watanabe, A., Hitomi, Y., Saeki, E., Wada, A., and Fujimoto, M.(1988), “Properties of Brace Encased in Buckling-Restraining Concrete and Steel Tube.”, Proceedings of Ninth World Conference on Earthquake Engineering, August 2-9, Tokyo-Kyoto, Japan.(Vol. IV-719~724)
26. Yoshida, K., Mitani, I. and Ando, N. (2000),”Shear Force of Reinforced Unbonded Brace Cover at Its End.”, Proceedings of 6th ASCCS Conference, Los Angeles, USA, March 22-24, pp.371~376.
27. 李文芳、陳正誠、李超雄,「BIB及韌性同心斜撐系統之消能及抗震行為研究」第二屆結構工程研討會,南投,民國八十三年。
28. 陳正誠、王錦華,”鋼結構韌性同心斜撐耐震結構系統”,土木技術期刊(民國九十年一月)
29. 陳正誠、王錦華、黃添進,「韌性斜撐構材之挫屈防止設計及其在補強上之運用」,土木技術第四卷第一期。
30. 陳正誠(2000),”韌性同心斜撐構架與韌性斜撐構材之耐震行為與設計”,結構工程,第十五卷 第一期,第 53~78頁。
31. 賴俊維(2001),”鋼骨消能支撐構架之耐震行為研究”國立台灣大學土木工程研究所 碩士論文 蔡克銓 教授指導。
32. 蔡克銓、賴俊維, ”鋼骨消能支撐構架之耐震行為”,土木水利,第二十八卷,第二期,第 73-85頁(2001)。
33. 蔡克銓、賴俊維, ” 鋼骨消能支撐構架之耐震研究”,結構工程,第十七卷 第二期。
34. 長谷川久已、竹內徹、岩田衛、山田哲與秋山宏(1999),” Experimental Study on Dynamic Behavior of Unbonded-Braces.”,日本建築學會技術報告集 第9號 pp. 103 ~ 106.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔