(34.201.11.222) 您好!臺灣時間:2021/02/25 04:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳沛清
研究生(外文):PeiChing Chen
論文名稱:鋼梁與RC柱複合構架之構件與接合行為研究
論文名稱(外文):A Study of RC Column-to-Foundation and Steel Beam-to-RC Column Joints for An RCS Frame Specimen
指導教授:蔡克銓蔡克銓引用關係
指導教授(外文):K.C. Tsai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:197
中文關鍵詞:複合構造鋼梁接混凝土柱之複合系統RCS構架試驗
外文關鍵詞:Composite ConstructionSteel and Reinforced Concrete Composite StructuresRCS Frame Test
相關次數:
  • 被引用被引用:5
  • 點閱點閱:268
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國家地震工程研究中心已與美日兩國合作,定於民國九十一年共同進行實尺寸鋼筋混凝土柱接鋼梁(簡稱RCS)構架之耐震試驗研究,此構架乃為含樓板之三層樓三跨度鋼筋混凝土柱與鋼梁複合構造。本研究針對此三層樓構造,進行子結構反覆循環載重試驗,以作為中美日合作計畫之先期研究。試驗項目包括一樓實尺寸RC柱與基礎接合續接位置行為研究(簡稱FF系列)、一樓0.52比例縮尺寸RC柱在不同軸力效應下之行為研究(簡稱FR系列)以及頂層樓實尺寸梁柱接頭錨定行為研究(簡稱R系列)。
試驗結果顯示,FF系列試體在基礎面上1m處續接之試體行為反應較好;FR系列試體軸力較大者其極限強度也較大,受高軸力試體的破壞模式為柱底之壓力破壞,有別於一般低軸力下之撓曲破壞;R系列試體柱主筋焊接於錨定鋼板之鋼筋應可發展出理想之握裹強度,試驗証實不須為了發展延伸長度而使頂層柱作額外之突出段。此外,本研究採用斷面分析法分析FF系列與FR系列之行為,其中鋼筋應力應變關係考慮低反覆疲勞破壞和軟化分枝模型,混凝土應力應變關係採用Mander圍束混凝土應力應變曲線,利用平面保持平面求得彎矩曲率關係,再以彎矩面積法求取柱頂側力和位移關係。R系列試體採用本研究推導之變形模型分離柱頂總位移之各項變形分量,包括柱變形、鋼梁變形、交會區承壓變形與交會區剪力變形,分析結果顯示柱頂總位移之主要分量皆來自於鋼梁變形。最後本研究以非線性分析軟體PISA2D建立三層樓RCS構架之分析模型,配合本試驗研究之模擬結果,以適當的有限元素與降伏規則進行RCS構架之側推分析、反覆循環載重行為分析以及動力分析,以為將來三層樓RCS構架之試驗做完善準備。
A joint research effort among US, Japan and Taiwanese researchers on large scale frame testing of steel and concrete composite structures has been launched in 2001. It is the consensus that a 2-D full-scale three-story three-bay RCS moment resisting frame be constructed and tested in the NCREE to accelerate the world-wide implementation of RCS structural systems in real application. In this research, cyclic tests were conducted on the roof beam-to-RC column and the RC column to foundation subassemblage specimens.
In this research, a total of six specimens have been fabricated and tested in order to investigate the effectiveness of three different kinds of connection details. It includes: (a) the splice location effects on the 1st floor RC column to the foundation joint (FF series specimens), (b) the axial load effects to the responses of RC column (FR series specimens), (c) the anchorage details of the roof interior RCS beam-to-column joint (R series specimens). FF series experimental results show that the performance of the one-meter high splice location is better than that on the top face of the foundation. FR series experimental results show that higher axial loads make higher column flexural strength. R series experimental results show that the proposed reinforcing anchorage end plate details can satisfactorily provide the needed anchorage for column bars.
For FF and FR specimens, the analytical moment versus curvature relationships were computed. It assumes plane remains plane after bending and incorporates the low-cycle fatigue and the soften-branch model for the vertical reinforcement and the Mander’s confined concrete model. It is illustrated that the experimental cyclic cantilever column load versus displacement response skeleton curves can be accurately predicted by employing the Moment-Area Method. For R series specimens, the column end lateral displacements due to column deformations, beam deformations, panel zone bearing deformations and panel zone shear deformations can be separated by the proposed method. Good agreements with the subassemblage test results are also observed in the analytical cyclic responses simulated by using a general-purpose inelastic structural analysis software PISA2D. The complete three-story three-bay analytical RCS frame model is also constructed and calibrated based on the test results. Finally, nonlinear static and dynamic time-history analyses are performed in order to investigate the most possible ultimate lateral strength and the inelastic demands imposed on the frame specimen under the simulated earthquake effects.
誌謝 一
摘要 二
目錄 四
表目錄 九
圖目錄 十
照片目錄 十七
第一章 緒論 1
1.1前言 1
1.2研究目的與內容 2
第二章 RCS構架系統介紹 5
2.1梁柱接合形式 5
2.1.1柱連續型式 5
2.1.2 梁連續型式 6
2.2梁柱接合部之加勁與補強方式 6
2.3梁柱接頭之破壞模式與力學模型 9
2.3.1 有效寬度與有效深度 9
2.3.2 交會區剪力強度 11
2.3.3 梁柱交會區內箍筋剪力強度 13
2.3.4 垂直承壓破壞下節點強度 14
2.3.5 內元素與外元素強度 15
2.3.5.1 內元素剪力強度 16
2.3.5.2 內元素承壓強度 17
2.3.5.3 外元素剪力強度 18
2.3.5.4 外元素握裹強度 19
2.4文獻回顧 19
第三章 試驗研究計劃 24
3.1大型構架實驗計劃 24
3.1.1 三層樓實尺寸構架 24
3.1.2 SAP2000 彈性分析 25
3.1.3 PISA2D 側推分析 26
3.2試體規劃 27
3.2.1 實尺寸RC柱與基礎接合(FF系列 28
3.2.2 縮尺RC柱與基礎接合(FR系列) 29
3.2.3 頂層RCS梁柱接頭(R系列) 29
3.3試體製作與組裝 31
3.4試體裝置與試驗方法 32
3.4.1 試體架設 32
3.4.2 施力系統與量測儀器 34
3.4.3 試驗方法 39
第四章 試驗過程與結果 40
4.1材料性質試驗 40
4.2 試體試驗紀錄 41
4.2.1 FF系列試體 42
4.2.2 FR系列試體 43
4.2.3 R系列試體 45
4.3試體試驗結果與比較 49
4.3.1 等效側向力 49
4.3.2 彎矩與側位移角關係曲線 50
4.3.3 彎矩與曲率關係曲線 52
4.3.4 理論強度與試驗強度之比較 53
第五章RC柱與基礎接合理論分析 54
5.1斷面分析法 54
5.1.1 材料組成律 54
5.1.1.1 混凝土 54
5.1.1.2 鋼筋 58
5.1.2 理論分析模型 59
5.1.2.1 彎矩與曲率關係 60
5.1.2.2 柱頂側力與位移關係 61
5.1.3 理論分析與試驗結果之比較 68
5.1.3.1 彎矩與曲率關係圖 69
5.1.3.2 側力與側位移角關係圖 69
5.2 PISA2D非線性分析 70
5.2.1 分析模型簡介 70
5.2.2 分析結果 71
第六章 頂層梁柱接頭理論分析 72
6.1 概述 72
6.2 理論變形分析 72
6.2.1 柱變形 74
6.2.2 梁變形 74
6.2.3 交會區承壓變形 75
6.2.4 交會區剪力變形 75
6.2.5 變形分量之分離 78
6.2.6 分析結果 79
6.3 PISA2D非線性分析 82
6.3.1 分析模型簡介 82
6.3.2 分析結果 83
第七章 實尺寸RCS構架非線性分析 84
7.1 分析模型建立 84
7.2 RCS構架非線性分析 85
7.2.1 反覆循環載重分析 85
7.2.2 動力分析 86
第八章 結論與建議 88
8.1結論 88
8.2建議 90
參考文獻 92
附表 96
附圖 103
附照片 177
1.ASCE Task Committee on Design Criteria for Composite Structures in Steel and Concrete (1994), “Guidelines for Design of Joints Between Steel Beams and Reinforced Concrete Columns.”, Journal of Structural Engineering, ASCE, Vol.120, No. 8,pp.2330-2351.
2.Bracci, J.M., Moore, W.P., and Bugeja, M.N.(1998),” Seismic Behavior of Composite RCS Frame Systems.” U.S.-Japan Cooperative Earthquake Research Program, 5th Joint Technical Coordinating Committee Meeting, Tokyo, Japan.
3.CSI (2000) “SAP2000:Integrated Finite Element Analysis and Design of Structures.”, Computers and Structures Inc., Berkeley, California.
4.Deierlein, G.G.(1988),”Design of Moment Connections for Composite Frames.”, Ph.D. Dissertation, University of Texas, Austin, Texas.
5.Deierlein, G.G., Yura, J.A., and Jirsa, J.O.(1988), “Design of Moment Connections for Composite Framed Structures.” PMFSEL Report No. 88-1, University of Texas at Austin, Texas.
6.Deierlein, G.G. and Mehanny, S.S.F., “Modeling and Assessment of Seismic Performance of Composite Frames with Reinforced Concrete Columns and Steel Beams.”, National Science Foundation, Grant NO. CMS-9632502 Report NO.135, Jan.2000.
7.Esche, C.D., Bracci, J.M. and Moore, W.P. Jr.,”Joint Strength in RCS Frames.”, Center for Building Design and Construction, Technical Report CBDC-99-02,August 11,1999.
8.FEMA-350(2000), “Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings.”, prepared by the SAC Join Venture for the Federal Emergency Management Agency, Washington, DC.
9.Iizuka, S.I., and Kasamatsu, T.(1996),” Experimental Study on the Seismic Resistance of the Joints Composed of the Reinforced Concrete Columns and Steel Beams.” Eleventh World Conference on Earthquake Engineering, Paper No. 193,Elsevier Science Ltd.
10.Kanno, R. (1993), “Strength, Deformation, and Seismic Resistance of Joints Between Steel Beams and Reinforced Concrete Columns.”, Ph.D. Thesis, Cornell University, Ithaca, NY.
11.Kanno, R. and Deierlein, G.G.,”Seismic Behavior of Composite (RCS) Beam-Column Joint Subassemblies.”, Composite Construction III, 1996.
12.Kanno, R. and Deilerlein, G.G. (1998), ”Bearing Strength of Joints between Steel Beams and Reinforced Concrete Columns.”, PSSC in Korea.
13.Kanno, R., and Deierlein, G.G.,”Design model of Joints for RCS Frames.”, Composite Construction in Steel and Concrete IV, ASCE, 2000.
14.Kim, K., and Noguchi, H.(1997),” Effect of Connection-Type on Shear Performance of RCS Structures.” U.S.-Japan Cooperative Earthquake Research Program, 4th Joint Technical Coordinating Committee Meeting, Monterrey, CA.
15.Mander, J.B.(1983),”Seismic Design of Bridge Piers.”, Ph. D. thesis, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
16.Mander, J. B., Priestley, M. J. N., and Park, R. (1988a),”Theoretical Stress-Strain Model for Confined Concrete.”, J. Struct. Div., ASCE, 114(8), pp.1804.
17.Mander, J. B., Priestley, M. J. N., and Park, R. (1988b),”Observed Stress-Strain Model for Confined Concrete.” , J. Struct. Div., ASCE, 97(7), pp.1969-1990.
18.Mander, J.B., Panthaki, F.D., Kasalantt, A. (1994), ”Low Cycle Fatigue Behavior of Reinforcing Steel.”, Journal of Materials in Civil Engineering, ASCE, 6(4), pp.459-468.
19.Monti, G., and Nuti, C.(1992),”Nonlinear Cyclic Behavior of Reinforcing Bars Including Buckling.”, Journal of Structural Engineering, ASCE, 118(12), pp.3268-3284.
20.Nishimura, Y.(1997a), “Experiments on Stress Transfer in Through Beam Type Joins.” U.S.-Japan Cooperative Structural Research Project on Composite and Hybrid Structures.
21.Nishimura, Y.(1997b), “Experiments on Composite RCS Frame with Through Beam Type Joints.” U.S.-Japan Cooperative Structural Research Project on Composite and Hybrid Structures.
22.SAC (1997), “Protocol for Fabrication, Inspection, Testing, and Documentation of Beam-Column Connection Tests and Other Experimental Specimens. Appendix E:Loading Protocol for Stepwise Increasing Cyclic Tests. “ , SAC Background Document SAC/BD-97/02
23.Sakaguchi, N., Tominaga, H., Murai, Y., Takase, Y., and Shuto, K. (1988),” Strength and Ductility of Steel Beam-RC Column Joint.”, Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan.
24.Sheikh, T.M., Yura, J.A., and Jirsa, J.O.(1987),”Moment Connections between Steel Beams and Concrete Columns.”PMFSEL Report No. 87-4, University of Texas at Austin, Texas.
25.Wight, J.K., and Gustavo, P.M., “Seismic Response of Exterior RC Column-to-Steel Beam Connections.”, Journal of Structural Engineering Vol.126,No.10, Oct.2000,ASCE.
26.Wight, J.K., and Gustavo, P.M., “Modeling Shear Behavior of Hybrid RCS Beam-Column Connections.”, Journal of Structural Engineering, Vol.127, No.1, Jan.2001,ASCE
27.Yoshino,T.,et.al.(1990),”Mixed Structural Systems of Precast Concrete Columns and Steel Beams.”, IABSE Brussels, pp.401~406.
28.蔡克銓、高健章、邱昌平、蔡益超、陳文生(1990),「鋼構架梁柱接頭之耐震行為」,國立台灣大學地震工程研究中心,研究報告CEERR79-10。
29.于瑞佐 (1998),「鋼梁與鋼筋混凝土柱混合型結構梁柱接頭韌性行為研究」,國立台灣大學土木工程學研究所博士論文,蔡克銓指導,十一月。
30.陳威志 (1999),「梁翼切削與弱梁柱交會區共存型梁柱接頭韌性行為研究」,國立台灣大學土木工程學研究所碩士論文,蔡克銓指導,六月。
31.汪向榮 (1999),「預鑄中空矩形橋柱之抗彎行為」,國立成功大學土木工程學研究所碩士論文,莫詒隆指導,六月。
32.葉勇凱、莫詒隆、楊宙燕 (2000),「中空鋼筋混凝土實尺寸橋柱之韌性剪力強度與補強試驗(二)」,國家地震工程研究中心,報告編號NCREE-00-025,十二月。
33.張劉權 (2001),「泛用型非線性靜動態平面結構分析程式之研發」,國立台灣大學土木工程學研究所碩士論文,蔡克銓指導,六月。
34.錢沛鴻(2002),「樓版對鋼梁與鋼筋混凝土柱接頭複合行為研究」,國立高雄第一科技大學營建工程學系碩士論文,鄭錦銅指導,六月。
35.陳誠直、林南交(2002),「鋼筋混凝土柱與鋼梁接頭行為」,國家地震工程研究中心,報告編號NCREE-02-018。
36. 內政部營建署(1999),「建築物耐震設計規範及解說」,十一月。
37.潤弘精密工程事業股份有限公司(1997),「大潤發量販台中店結構計算書」,五月。
38.潤弘精密工程事業股份有限公司(1998),「潤泰紡織三廠結構計算書 」,五月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔