(3.237.97.64) 您好!臺灣時間:2021/03/09 08:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃彥智
研究生(外文):YenChih Huang
論文名稱:含挫屈束制消能支撐構架耐震性能之試驗與分析研究
論文名稱(外文):Experimental Responses of Large Scale Buckling Restrained Brace Frammes
指導教授:蔡克銓蔡克銓引用關係
指導教授(外文):K.C.Tsai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:180
中文關鍵詞:挫屈束制消能支撐挫屈束制消能支撐構架集中因子消能核心段等效勁度
外文關鍵詞:BRBBRBFconcentrate factorcore membereffective stiffness
相關次數:
  • 被引用被引用:12
  • 點閱點閱:846
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
相關研究已證實挫屈束制支撐構架(BRBF)為一種有效率的耐震構架,挫屈束制支撐(BRB)一般而言是由十字型或一字型鋼板構成之核心單元加上鋼管混凝土構成之側撐單元所組成,另外,為了避免核心受壓與側撐單元摩擦造成軸壓增量太大,在核心與側撐間需另加一層脫材料。由於單核心斷面之挫屈束制支撐在與構架接合時每一端需使用八片續接板及兩倍的螺栓用量,造成接合部分過於擁擠,為了改善此種接合的缺點,相關研究發展出以雙T型核心加雙鋼管(DTDT)或雙鋼板核心加雙鋼管(DPDT)構成之挫屈束制支撐,並在已在台大完成一系列之試驗,然而,關於大尺寸之挫屈束制支撐構架之試驗結果則非常有限。
有鑑於此,本研究之主要目的包括:(1)進行台北縣政府新建大樓挫屈束制支撐構件及大尺寸構架試驗以研究支撐之彈性勁度、非線性受力行為及接合細節;(2)研究支撐具不同配置及核心長度之構架試驗與分析行為;(3)研究挫屈束制支撐核心應變與樓層側位移角之關係;(4)提供含挫屈束制支撐構架之分析與設計建議。試驗結果顯示台北縣政府使之各型式挫屈束制支撐具有良好之製造品質,試驗與理論彈性勁度非常接近,在兩支材料分別為SN400B及LYP235之非線性構件試驗中顯示,在核心應變為0.02時其應變硬化因子分別為1.5及1.35,同時最大之拉壓差百分比不超過7%,此外,在進行完SAC標準歷時(最大核心應變0.02)及修正之近斷層歷時後(最大核心應變0.06),兩支構件分別在核心應變為0.02之疲勞試驗中承受36及48週次才斷裂。在由以實際大樓第16樓之0.5縮尺所得之單跨V型支撐構架試驗中得知,構架可承受由分析所得之0.23g及0.46g地震歷時作用下之樓層側位移加載而不發生破壞。
在使用原試驗構架進行之三組雙鋼板雙鋼管挫屈束制支撐構架試驗中顯示,支撐之核心應變在較大的變形情況下可利用樓層的側位移角需求以簡單的幾何關係及支撐核心長度及工作點間長度之比值(集中因子)計算而得,試驗結果亦顯示,在較大側位移角的情況下支撐之核心拉應變會大於另一端支撐之核心壓應變,顯示兩支撐之軸力在試驗中有互相平衡之趨勢,可減少兩支撐傳遞到梁的剪力。
Buckling restrained braced frame (BRBF) has been evolved into a very effective system for severe seismic application. Buckling restrained braces (BRBs) are commonly made from encasing a core steel cross-shape or flat bar member into a steel tube and confined by infill concrete. An unbonding material is placed between the core bracing and the concrete infill in order to reduce the friction while restrain the bracing from buckling. In the practical application of the BRBs, each brace-to-gusset connection requires two set of bolts and eight splice plates. In order to reduce the length and the number of bolts in the brace-to-gusset connection, the double-tee (or double-plate) double-tube (DPDT or DTDT) BRBs have been developed and extensively tested in National Taiwan University in the past few years. However, experimental data on the performance of large scale BRBF specimens is still very limited. Therefore, the objectives of this research include: 1) conducting tests to investigate the elastic stiffness, the inelastic responses of the BRBs and its connection details adopted in the Taipei County Administration Building (TCAB), 2) investigating the experimental and analytical responses of the single bay V-shaped BRBFs constructed with two BRBs in three different aspect ratios in length, 3) investigating the steel BRB core strain versus inter-story drift relationships, and 4) providing guidelines for the analysis and design of BRBF for severe seismic applications. Test results confirm that the elastic axial stiffness of the BRBs adopted in the TCAB can be accurately predicted by the effective axial stiffness considering the variation of the cross-sectional areas along the length of the steel brace. In addition, the inelastic component test results confirm that the strain hardening factors for BRBs made from SN400B and LYP235 steel by Nippon Steel Corporation are about 1.5 and 1.35 respectively for a peak core strain of 0.02. The differences between the peak compressive and tension forces are less than 7%. The two inelastic component test results confirm that, after applying the cyclic increasing strains (peak core strain=0.02) and the simulated near fault cyclic strains (peak core strain=0.06), the SN400B and LYP235 BRBs sustained 36 and 48 cycles, respectively of cyclic fatiguing strains of 0.02 before fracture occurred in the steel cores. Tests conducted on the 0.5-scale one-bay one-story V-shaped BRBF, constructed according to the structural members and connections at16th floor of the TCAB, confirm that the frame specimen can satisfactorily sustain the inter-story drift time history computed from the nonlinear dynamic frame response analysis for two levels (PGA=0.23 and 0.46g) of earthquake. The subsequent three V-shaped DPDT-BRBF tests confirm that the steel brace core strain demands can be satisfactorily predicted from the story drift demand by geometry and incorporating the ratio of the work point-to-work point dimension to the inelastic core length. Test results also reveal that at a large story drift, the tensile strain in the tension brace was always greater than the compressive strain in the compression brace. This somewhat suggests that the peak compression and tension forces have a tendency to self-equilibrate and reach a reduced unbalanced vertical force components resisted by the horizontal beam member.
第一章 緒論
1.1前言
1.2研究動機
1.3研究目的與內容
第二章 含挫屈束制消能支撐構架的力學行為與基本特性
2.1挫屈束制消能支撐簡介
2.2雙鋼管型挫屈束制消能支撐介紹
2.3文獻回顧
2.4含挫屈束制支撐構架之力學行為與設計流程
2.4.1挫屈束制消能支撐之力學行為
2.4.2含挫屈束制支撐構架之力學行為與設計流程
第三章 台北縣政府提昇耐震力工程挫屈束制支撐試驗介紹
3.1試驗背景與簡介
3.2 彈性構件試驗
3.2.1試驗構架與試體
3.2.2試驗目的與要求
3.2.3施力裝置與量測儀器
3.2.4試體組裝過程
3.2.5試驗過程與結果討論
3.3 非線性構件試驗
3.3.1 試驗試體
3.3.2 試驗目的與要求
3.3.3 施力裝置與量測儀器
3.3.4試體組裝過程
3.3.5 試驗加載歷時
3.3.6 試驗過程
3.3.7 試驗結果與討論
3.4 構件與構架接合試驗
3.4.1 試驗構架與試體
3.4.2 試驗目的與要求
3.4.3 施力裝置與量測儀器
3.4.4試驗裝置組裝過程
3.4.5 加載歷時與試驗過程
3.4.6 試驗結果與討論
3.4.7 後續之試驗
3.5 結論
第四章 試驗計劃與試驗過程
4.1試驗概述
4.2試體設計
4.3試體之製作與組裝過程
4.3.1試體製作
4.3.1試體組裝
4.4施力系統及量測裝置
4.4.1構件試驗
4.4.2構架接合試驗
4.5試驗加載歷時
4.5.1構件試驗
4.5.2構架接合試驗
4.6試驗過程
4.4.1構件試驗
4.4.2構架接合試驗
第五章 試驗結果與分析
5.1基本材料試驗
5.2非線性構件試驗
5.3構件與構架接合試驗
5.3.1構架之受力與變形行為
5.3.2接合與繫接之行為
5.3.3挫屈束制支撐之軸向變形
5.4非線性分析程式模擬
5.4.1非線性結構分析軟體PISA2D
5.4.2構件試驗模擬
5.4.3構架試驗之分析結果
第六章構架設計與參數研究
6.1 構架分析軟體
6.2含挫屈束制消能支撐之六層樓平面鋼構架分析
6.2.1挫屈束制消能支撐構架UBF之分析模式與設計範例
6.3平面構架分析結果與討論
第七章 結論
1. Aiken, I., Clark, P., Tajirian, F., Kasai, K., Kimura, I., and Ko, E. (1997), “Unbouded Braces in the United States-Design Studies, Large-Scale Testing and the First Building Application”,Seismic Provisions for Structural Steel Buildings, AISC, Chicago, IL, pp.203~217.
2. AISC (1997)”Seismic Provisions for Structural Steel Buildings.”, AISC, April, 15, Appendix S, pp.30~31.
3. Ando, N., and Takahashi, S. (1991), “A Study on Unbonded Composite Braces Covered with FRP.”, ICCS-3, pp.377~382.
4. Brown, A. P., Aiken, I. D., and Jafarzadeh F. J.(2001),”Buckling Restrained Braces Provide the Key to the Seismic Retrofit of the Wallace F. Bennett Federal Building.”, Modern Steel Construction, August.
5. Chen, C. C., and Lu, L. W. (1990), “Development and Experimental Invesigation of a Ductile CBF System.”, Proceedings of Fourth U.S. Conference on Earthquake Engineering, May 20-24, Palm Springs, California, Vol. 2, pp 575~584.
6. Clark, P. W., Kasai, K., Aiken, I. D., and Kimura, I. (2000), ”Evaluation of Design Methodologies for Structures Incorporating Steel Unbonded Braces for Energy Dissipation”, Proceedings of 12th World Conference on Earthquake Engineering, New Zealand ,#2240.
7. Inoue, K., Higasibata, Y., and Inoue, K. (1994), ”Lateral Bracing Criteria of the Composite Braces.”, Proc. ASCE Structures Congress XII , ASCE ,Vol. 1, pp. 152~157.
8. Inoue, K., Higasibata, Y., and Sawaizumi, S. (2001), ”Stiffness Requirements for Unbonded Braces Encased in Concrete Panels.”, Journal of Structural Engineering, ASCE, Vol.127, No.6, pp.712~719.
9. Inoue, K., and Kuwahara, S.(1998),”Optimum Strength Ratio of Hysteretic Damper.”, Earthquake Engineering and Structural Dynamics, Vol.27, pp.577~588.
10. Iwata, M., Kato, T., and Wada, A. (2000), ”Buckling-Restrained Braces as Hysteretic Dampers.”, Behaviour of Steel Structures in Seismic Areas, Balkema, Rotterdam, pp.33~38.
11. Kasai, K., Fu, Y., and Watanabe, A.(1998),”Passive Control Systems for Seismic Damage Mitigation.”, Journal of Structural Engineering, ASCE, Vol.124, No.5, pp.501~512.
12. Kim, J., and Lee, K. (2000), ”Optimum Stiffness Ratio of Unbonded Brace Hysteretic Dampers.”, The 2th Seminar on Earthquake Engineering for Building Structures (SEEBUS 2000), October 20-21, Kyoto, Japan, pp.207~216.
13. Ko, E., Aiken, I., Tajirian, F., and Kimura, I. (2001), ”Building a Safer Future with Unbonded Brace”, First International Conference on Steel & Composite Structures, Pusan, June 14-16, Korea, pp.1549~1556.
14. Morino, S., Kawaguchi, J., Ito, S., and Shimokawa, H. (1996), ”Hysteretic Behavior of Stiffened Flat-Bar Braces.”, Proceedings of International Conference on Advances in Steel Structures.Dec. 11-14, Hong Kong, Vol. 2, pp.1127~1132.
15. Nakamura, H., Maeda, Y., Sasaki, T., Wada, A., Takeuchi, T., Nakata, Y., and Iwata, M. (2000), ”Fatigue Properties of Practical-Scale Unbonded Braces”, Nippon Steel Technical Report, No. 82, July, pp.51~57.
16. SAC (1997)” Protocol for Fabrication, Inspection, Testing, and Documentation of Beam-Column Connection Tests and Other Experimental Specimens. Appendix E: Loading Protocol for Stepwise Increasing Cyclic Tests”, SAC Background Document SAC/BD-97/02.
17. Shaw, A.(2000), ”Seismic Retrofit of the Marin County Hall of Justice Using Steel Buckling-Restrained Braced Frames”, SEAOC 2000 Convention, pp.91~101.
18. Shukla, A., K., and Datta, T., K.(1999),”Optimal Use of Viscoelastic Dampers in Building Frames for Seismic Force.”, Journal of Structural Engineering, ASCE, Vol.125, No.4, pp.401~409.
19. Wada, A., Sacki, E.,Takeuchi, T., and Watanabe, A. (1994), ”Development of Unbonded Brace.”, Nippon Steel Corporation, Tokyo, JAPAN.
20. Watanabe, A., Hitomi, Y., Saeki, E., Wada, A., and Fujimoto, M. (1988), “Properties of Brace Encased in Buckling-Restraining Concrete and Steel Tube.”, Proceedings of Ninth World Conference on Earthquake Engineering, August 2-9, Tokyo-Kyoto, Japan.(Vol. IV-719~724)
21. Yoshida, K., Mitani, I., and Ando, N. (2000), ”Shear Force of Reinforced Unbonded Brace Cover at Its End.”, Proceedings of 6th ASCCS Conference, Los Angeles, USA, March 22-24, pp.371~376.
22. 李文芳、陳正誠與李超雄(1994), ”BIB及韌性同心斜撐系統之消能及抗震行為研究(一)”,第二屆結構工程研討會,南投,台灣,第424~433頁。
23. 翁崇興(2002),”雙鋼管型挫屈束制消能支撐之耐震行為與應用研究”國立台灣大學土木工程學研究所 碩士論文 蔡克銓 教授指導。
24. 陳正誠(2000), ”韌性同心斜撐構架與韌性斜撐構材之耐震行為與設計”,結構工程,第十五卷,第一期,第 53~78頁。
25. 陳正誠與王錦華(2001), ”鋼結構韌性同心斜撐耐震結構系統”,土木技術,第四卷,第二期,第31~39頁。
26. 陳正誠、王錦華與黃添進(2001), ”韌性斜撐構材之挫屈防止設計及其在補強上之運用”,土木技術,第四卷,第一期,第98~117頁。
27. 張劉權(2001)”泛用型非線性靜動態平面結構分析程式之研發”國立台灣大學土木工程研究所 碩士論文 蔡克銓 教授指導。
28. 蔡克銓與賴俊維(2002), ”鋼骨消能支撐構架之耐震研究” 結構工程。
29. 賴俊維(2001)”鋼骨消能支撐構架之耐震行為研究”國立台灣大學土木工程研究所 碩士論文 蔡克銓 教授指導。
30. 長谷川久已、竹內徹、岩田衛、山田哲與秋山宏(1999), ”アンボンドブレースの動的性能に關する實驗的研究”,日本建築學會技術報告集 第9號,第103 ~ 106頁。
31. 佐伯英一郎、杉澤充、山口種美、望月晴雄與和田章(1995), ”低降伏點鋼のヒステリシス及びヒステリシスエネルギ一特性に關する研究” 日本建築學會技術報告集 第473號,七月,第159~168頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔