(3.238.186.43) 您好!臺灣時間:2021/03/01 15:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳高惇
研究生(外文):KaoTun Chen
論文名稱:加勁UHPC圍束混凝土之單軸抗壓行為
指導教授:陳振川陳振川引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:超高性能混凝土鋼絲網圍束單軸抗壓補強
相關次數:
  • 被引用被引用:13
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
目前國內舊有橋樑已日益增多,加上台灣所面臨之天災亦不斷,一旦發生往往造成相當大之損失。橋樑扮演著傳遞運輸的角色,如何在歷經天災後仍能保有其特有之功能與角色,一直是工程師面臨之問題,因此補強工法應運而生。超高性能混凝土(UHPC)本身有極高強度(200 )之配比特性,在添加鋼纖維之後,更能有效提升整體韌性,且其握裹強度,可高達70 ,為一般已知混凝土之兩倍之多。
本試驗最主要研究圍束混凝土在單軸抗壓下之行為,以韌性行為為探討之主軸。除了鋼纖維之外,本試驗中亦採用鋼絲網為加勁材料。鋼絲網具有緊密排列且規則之環向與縱向加勁,且其取得容易與施工便利等優點。鋼絲網與UHPC在施工性上為一大優勢,且鋼絲網可取代鋼纖維發揮其應有之機制。
在本試驗中發現,鋼纖維添加至2%時,極限強度可提升約27.11 %,峰值應變可提升約47%左右。
以鋼絲網當作橫向加勁材料,當層數到6層時,極限強度可以提升約63.9%,峰值應變更可以增加至一倍以上。
以現行既有之模式進行分析,在極限強度上均有不錯之表現,在以鋼絲網當作加勁材料的模擬,更有低估之表現。
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究範圍 2
第二章 文獻回顧 3
2.1 現行補強工法簡介[1] 3
2.1.1 鋼筋混凝土包覆工法[1] 4
2.1.2 鋼板包覆工法[1] 4
2.1.3 纖維貼片包覆(FRP)工法[3] 4
2.2 超高性能混凝土簡介 5
2.2.1 超高性能混凝土配比特性對握裹介面之影響 6
2.2.2 鋼纖維的增韌機制 8
2.2.3 鋼纖維對抗拉行為的影響 8
2.2.4 對圍束行為的影響 10
2.3 鋼絲網的應用 11
2.3.1基本假設 12
2.3.2 鋼絲網種類 13
2.3.3 相關規範 14
2.3.4相關試驗 15
2.3.4.1 聚合物纖維與鋼絲網之複合材料[38] 15
2.3.4.2 鋼絲網包覆方型混凝土單軸試驗[40] 15
2.3.4.3 鋼絲網套管剪力加勁橋柱縮尺試驗[41] 16
2.4 圍束混凝土簡介 16
2.4.1 混凝土受三軸壓力作用之簡介 16
2.4.2 圍束模式分類 17
2.4.3 基本理論 18
2.4.4 圍束混凝土材料組成率 19
2.4.4.1 Mander et al.圍束混凝土應力-應變模式[48] 19
2.4.4.2 Hoshikuma et al.圍束混凝土應力-應變模式[49] 23
2.4.4.3 Razvi and Saatcioglu圍束混凝土應力-應變模式[50] 25
2.4.4.4 Assa et al.圍束混凝土應力-應變曲線[47] 28
2.4.5 韌性比 31
2.5 圍束試體單軸抗壓相關試驗 31
2.5.1 主動油壓試驗 32
2.5.2 單軸加壓FRP包覆試驗一[46] 32
2.5.3 單軸加壓FRP包覆試驗二[45,54] 33
第三章 試驗計畫 34
3.1 試驗背景 34
3.2 試驗流程 34
3.3 材料配比 34
3.4 試驗材料 35
3.4.1 超高性能混凝土 35
3.4.2 普通混凝土 36
3.5試驗儀器與設備 37
3.5.1製作部分 37
3.5.2 試驗部份 38
3.6 拌合程序與流度測試 39
3.6.1 拌合程序 39
3.6.2 流度測試 39
3.7 試驗項目及變數 40
3.8 試體製作與養護流程 41
3.8.1 試體製作 41
3.8.2 養護流程 42
3.9 試體加壓過程 43
3.9.1 試體加壓裝置 43
3.9.2 量測變數 43
3.9.3 抗壓試驗 44
第四章 結果與討論 45
4.1 流度測試結果 46
4.2 基本力學行為 47
4.2.1 抗壓行為 47
4.2.2 拉伸曲線模擬 47
4.3 填充材料選擇 48
4.3.1 試體製作觀察 49
4.3.2 試體承受單軸加載破壞歷程 49
4.3.3 綜合比較 51
4.4 UHPC圍束試體 51
4.4.1 試體及試驗觀察 51
4.4.1.1 試體製作觀察 52
4.4.1.2 試體承受單軸加載破壞歷程 52
4.4.1.3 試體裂縫 55
4.4.1.4 破壞歷程建立 57
4.4.2 參數影響 59
4.4.2.1 鋼纖維體積含量 59
4.4.2.2 包覆厚度 60
4.5 UHPC複合鋼絲網圍束試體 60
4.5.1 鋼絲網材料測試 60
4.5.2 試體與試驗觀察 60
4.5.2.1 試體觀察 61
4.5.2.2 試體承受單軸加載破壞歷程 61
4.5.2.3 試體裂縫 63
4.5.3 參數影響 66
4.5.3.1 包覆厚度 67
4.5.3.2 鋼絲網層數 67
4.5.3.3 鋼絲網尺寸 68
4.5.3.4 養護方式及齡期 69
4.6 理論比較 70
4.6.1 理論曲線模擬 70
4.6.1.1 UHPC圍束試體 70
4.6.1.2 UHPC複合鋼絲網圍束試體 72
4.6.2 韌性比 74
第五章 結論與建議 76
5.1 結論 76
5.2 建議 77
參考文獻 79
[1]蔡益超主編,「由阪神地震探討國內橋梁耐震工程之發展方向」,財團法人台灣營建研究中心,台灣台北,1996。
[2] Priestley, M.J.N., and F. Seible, “Seismic Assessment and Retrofit of Bridges.” Department of Applied Mechanics and Engineering Science, University of California, San Diego, July 1991.
[3]張國鎮主持,「鋼筋混凝土耐震結構性能設計法(一)─FRP補強技術與短柱破壞行為」,財團法人中興工程顧問社,2000。
[4]李有豐計畫主持人,「FRP複合材料補強橋墩設計準則之研究」,交通部科技顧問室委託,財團法人台灣營建研究院執行,台灣台北,1999。
[5]Ramirez, J. L., ” Ten Concrete Column Repair Methods,” Construction and Building Materials, V.10, No.3, 1996, pp. 195-202 .
[6]Fukuyama, K., Y. Higashibata, and Y. Miyauchi, “Studies on Repair and Strengthening Methods of Damaged Reinforced Concrete Columns,” Cement and Concrete Composites, V.22, 2000, pp. 81-88 .
[7] 苗伯霖,「新型高性能超高強建築材料─超高性能混凝土」,營建知訊,162期,pp. 52-60, 1996。
[8] Cheyrezy, M., V. Maret, and L. Frouin, “Microstructure Analysis of UHPC(Reactive Powder Concrete)”, Cement and Concrete Research, Vol. 25, No. 7, pp.1491-1500, 1995.
[9] Richard, P., and M. Cheyrezy, “Composition of Reactive Powder Concretes”, Cement and Concrete Research, Vol. 25, No. 7, pp.1501-1511, 1995.
[10] Dugat, J., N. Roux, and G. Bernier, “Mechanical Properties of Reactive Powder Concretes”, Materials and Structures, Vol. 29, pp 233-240, 1996.
[11] Matte,V., and M. Moranville, “Durability of Reactive Powder Composites: Influence of Silica Fume on the Leaching Properties of very Low Water/Binder Pastes”, Cement and Concrete Composites, Vol. 21, pp. 1-9, 1999.
[12] Dowd, W., and F. O’Neil, “Development of Reactive Powder Concrete(UHPC) Precast Products for the USA Market”, 4th International Symposium on the Utilization of High Strength/High Performance Concrete, Parxis, pp 1391-1398, 1995.
[13] Aitcin, C., and P. Richard, “The Pedestrian/Bikeway Bridge of Sherbrooke”, 4th International Symposium on the Utilization of High Strength/High Performance Concrete, Paris, pp 1399-1406, 1995.
[14] Adeline, R., and M. Behloul, “High Ductile Beams without Passive Reinforcement”, 4th International Symposium on the Utilization of High Strength/High Performance Concrete, Paris, pp 1383-1390, 1995.
[15] Torrenti, M., V. Matte, V. Maret, and C. Richet, “High Integrity Containers for Interim Storage of Nuclear Wastes Using Reactive Powder Concrete”, 4th International Symposium on the Utilization of High Strength/High Performance Concrete, Paris, pp 1407-1413, 1995.
[16]Mains, R. M., “Measurement of the Distribution of Tensile and Bond Stresses along Reinforcing Bars”, ACI Journal, Vol. 23, No. 3, 1951, p225-252.
[17]朱書賢(詹穎雯指導),「鋼纖維與超高性能混凝土間界面性質研究」,碩士論文,國立台灣大學土木研究所,台灣台北,2000。
[18]Alwan, J. M., A. E. Naaman, and W. Hansen, “Pull-Out Work of Steel Fibers From Cementitious Composites: Analytical Investigation,” Cement and Concrete Composites, V.13, 1991, pp. 247-255 .
[19]Mandel, J. A., S. Wei, and S. Said, ”Studies of the Properties of the Fiber-Matrix Interface in Steel Fiber Reinforced Mortar,” ACI Materials Journal, V.84, 1987 , pp. 101-109 .
[20]Leung, C. K. Y., and V. C. Li, “New Strength-Based Model for the Debonding of Discontinuous Fibres in an Elastic Matrix,” Journal of Materials Science, V.26, 1991, pp. 5996-6010 .
[21]Stang, H., Z. Li, and S. P. Shah, “Pull-Out Problem: Stress Versus Fracture Mechanical Approach,” ASCE Journal of Engineering Mechanics, V.116, 1990, pp. 2136-2150 .
[22]譚業成(詹穎雯指導),「超高性能混凝土力學行為之研究」,碩士論文,國立台灣大學土木研究所,台灣台北,2000。
[23]Ostertag, C.P., C.K. Yi, and G. Vondran,” Tensile Strength Enhancement in Interground Fiber Cement Composites”, Cement and Concrete Composites, V.23, 2001, pp. 419-425.
[24]陳冠勳(詹穎雯指導),「超高性能混凝土淺梁之撓曲行為」,碩士論文,國立台灣大學土木研究所,台灣台北,2001。
[25]Vipulanandan, C., and E. Paul, ” Performance of Epoxy and Polyester Polymer Concrete,” ACI Material Journal, V.87, No.3, 1990, pp. 241-251 .
[26]Soroushian, P., and C.D. Lee, “Tensile Strength of Steel Fiber Reinforced Concrete: Correlation with Some Measures of Fiber Spacing.” ACI Material Journal, V. 87, No.6, Nov.-Dec., 1990, pp. 541-546 .
[27]李秋義,樊紅,趙景海,「三維亂向分布鋼纖維方向效能係數的理論值」,哈爾濱建築大學學報,第31卷,第1期,1998年2月,pp. 81-84 。
[28]Scott, B. D., R. Park, and M. J. N. Priestley,” Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates,” ACI Journal, Proceedings, V.79, No.1, Jan.-Feb., 1982, pp. 13-37 .
[29]Ozcebe, G., and M. Saatcioglu, ” Confinement of Concrete Columns for Seismic Loading,” ACI Structural Journal, V.84, No.4, July-Aug., 1987,pp. 308-315 .
[30]Razvi, S.R., and M. Saatcioglu,” Confinement of Reinforced Concrete Columns with Welded Wire Fabric.” ACI Structural Journal, V.86, No.5, 1989, pp. 615-623.
[31]ACI Committee 549,”Guide for the Design, Construction, and Repair of Ferrocement.” ACI Structural Journal, No.85-S33, May-Jun.. 1998, pp. 325-351 .
[32]Arif, M., Pankaj, and S. K. Kaushik,” Mechanical Behavior of Ferrocement Composites: An Experimental Investigation,” Cement and Concrete Composites, V.21, 1999, pp. 301-312 .
[33]Ding, Y., and W. Kusterle, “ Comparative Study of Steel Fibre-Reinforced Concrete and Steel Mesh-Reinforced Concrete at Early Agesin Panel Tests,” Cement and Concrete Research, V.29, 1999, pp. 1827-1834 .
[34]Bailey, C. G.,” Membrane Action of Unrestrained Lightly Reinforced Concrete Slabs at Large Displacements,” Engineering Structures, V.23, 2001, pp. 470-483 .
[35]Al-Kubaisy, M. A., and M. Z. Jumaat,” Flexural Behavior of Reinforced Concrete Slabs with Ferrocement Tension Zone Cover,” Construction and Building Materials, V.14, 2000, pp. 245-252 .
[36]Paramasivam, P., C. T. E. Lim, and K. C. G. Ong,” Strengthening of RC Beams with Ferrocement Laminates,” Cement and Concrete Composites, V.20, 1998, pp. 53-65 .
[37]Singh, G. and G.J. Xiong,” Ultimate Moment Capacity of Ferrocement Reinforced with Weldmesh,” Cement and Concrete Composites, V.14, 1992, pp. 257-267.
[38]Debs, M. K. E., and A. E. Naaman,“ Bending Behavior of Mortar Reinforced with Steel Meshes and Polymeric Fibers,” Cement and Concrete Composites, V.17, 1995, pp. 327-338 .
[39]Mau, S.T., J. Holland, and L. Hong, “Small-Column Compression Tests on Concrete Confined By WWF,” Journal of Structural Engineering, V.124, No.3, Mar., 1998, pp. 252-261 .
[40]Seshu, D. R., and A. K. Rao, “ Behaviour of Ferrocement Confined Reinforced Concrete (FCRC) Under Axial Compression,” Materials and Structures, V.31, Nov., 1998, pp. 628-633 .
[41]Takiguchi, K., and Abdullah,” Shear Strengthening of Reinforced Concrete Columns Using Ferrocement Jacket.” ACI Structural Journal, V.98, No.5, 2001, pp. 696-704.
[42]Sfer, D., I. Carol, R. Gettu, and G. Etse, “Study of the Behavior of Concrete under Triaxial Compression.” Journal of Engineering Mechanics, V.128, No. 2, Feb. 1, 2002 , pp. 156-163 .
[43]陳彥睿(陳振川指導),「鋼管圍束高強度纖維混凝土於高溫力學行為研究」,碩士論文,國立台灣大學土木研究所,台灣台北,1999。
[44]Bazant, Z. P., and T. Tatsuya, “Total Strain Theory and Path-Dependence of Concrete,” Journal of the Engineering Mechanics Division, Proceeding of the American Society of Civil Engineers, V.106 , No.EM6 , 1980 , pp. 1151-1173 .
[45]Saafi, M., H. A. Toutanji, and Z. Li, “Behavior of Concrete Columns Confined with Fiber Reinforced Polymer Tubes.” ACI Materials Journal, V.96, No.4, 1999, pp. 500-509.
[46]Shahawy, M., and A. Mirmiran,” Behavior of Concrete Columns Confined by Fiber Composites.” Journal of Structural Engineering, V.123, No.5, 1997, pp. 583-590.
[47]Assa, B., M. Nishiyama, and F. Watanabe,” New Approach for Modeling Confined Concrete : Circular Columns,” Journal of Structural Engineering, ASCE, V.127, No. 7, 2002, pp. 743-750.
[48]Mander, J. B., M. J. N. Priestley, and R. Park,” Theoretical Stress-strain Model for Confined Concrete.” Journal of Structural Engineering, ASCE , V.114 , No.8, 1988, pp. 1804-1826.
[49]Hoshikuma, J., K. Kawashima, K. Nagaya, and A.W. Taylor, “ Stress- strain Model for Confined Reinforced in Bridge Piers.” Journal of Structural Engineering, V.123, No.5, 1997, pp. 624-633.
[50]Razvi, S., and M. Saatcioglu,” Confinement Model for High-strength Concrete.” Journal of Structural Engineering, ASCE, V.125, No. 3, 1999,pp. 281-289.
[51]Martinez, S., “Spirally-Reinforced High-Strength Concrete Columns,” PhD thesis, Cornell, Univ., Ithaca, N.Y..
[52]Candappa, D.P., S. Setunge, and J.G. Sanjayan,” Stress versus Strain Relationship of High Strength Concrete under High Lateral Confinement.” Cement and Concrete Research, V.29, 1999, pp. 1977-1982.
[53]Candappa, D.C., S. Setunge, and J.G. Sanjayan, ” Complete Triaxial Stress-Strain Curves of High-Strength Concrete.” Journal of Materials in Civil Engineering, V.13, No.3, May/June, 2001, pp. 209-215.
[54]Toutanji H.A.,” Stress-strain Characteristics of Concrete Columns Externally Confined with Advanced Fiber Composites Sheets.” ACI Materials Journal, V.96, No.3, 1999, pp. 397-404.
[55]Mansur, M. A., M. S. Chin, and T. H. Wee, “Stress-Strain Relationship of Confined High-Strength Plain and Fiber Concrete,” Journal of Materials in Civil Engineering, V. 9, No. 4, Nov.,1997, pp 171-179.
[56]陳永國(詹穎雯指導),「SCC之鋼筋握裹性質與橋柱韌性行為之研究」,碩士論文,國立台灣大學土木研究所,台灣台北,2001。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔