(18.210.12.229) 您好!臺灣時間:2021/03/03 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳國清
研究生(外文):Guo-Qing Chen
論文名稱:利用邊界元素法求解赫姆霍茲方程式中波導管及散射問題之應用
論文名稱(外文):Application of Helmholtz Equation by the Boundary Element Method to the Waveguide and Scattering Propagation Problems
指導教授:楊 德 良
指導教授(外文):Der-Liang Young
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:88
中文關鍵詞:邊界元素法電磁場馬克斯威爾方程式赫姆霍茲方程式奇異值分解法波導管散射波
外文關鍵詞:Boundary Element MethodMaxwell’s equationsHelmholtz equationrectangular waveguideSingular Value Decomposition (SVD)scattering wave
相關次數:
  • 被引用被引用:1
  • 點閱點閱:185
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本文主旨為利用邊界元素法來模擬電磁場之分佈。電磁場的控制方程式為馬克斯威爾方程式,經由時間諧和場假設其可推導成赫姆霍茲方程式。此即為本文的主要控制方程式。經由邊界元素法的離散後,其應用在實際問題上,首先考慮一內插金屬的波導管,因為其外型上下左右對稱,此計算區域可簡化為四分之一。未簡化和簡化後的已知邊界條件均為零,本文將利用奇異值分解法來求解其未知的邊界條件。此外應用在外場方面,本文考慮平面波射至完全導體的散射波問題,由於邊界元素法非常適合求解外域問題,其可直接求得散射遠場的值,此為邊界元素法之一大特點。最後將計算結果與解析解和其他數值模式比較,可驗證出本文的數值模式的精確度非常良好。

In this study, we use the Boundary Element Method to simulate the electromagnetic fields. The corresponding governing equations are the Maxwell’s equations. By separation of time variable, it can be transformed to the Helmholtz equation. This is the main equation of the discretization in the numerical simulation. After the discretization is determined, it would be applied in some electromagnetic problems. First, the rectangular waveguide with a metal insert will be considered. Because the rectangular waveguide with a metal insert is symmetric, we can consider only the quarter domain. And the known boundary conditions of the waveguide are all zero, we then will use the Singular Value Decomposition (SVD) to find out the non-trivial solution. Furthermore, the homogeneous scattering problems also are considered. When the incident plane wave passes through the perfect electrical conductor, it will produce a scattering field. And the perfect electrical conductor will be considered as a cylinder in 2D and sphere in 3D. Finally, comparisons of our numerical simulations with the analytical solutions and the other numerical methods are made, and we find that our numerical model is a good tool for the analysis in the field of electromagnetic wave propagation.

CONTENTS
誌謝
摘要
Abstract
Contents
Figure Lists
Table Lists
Chapter 1 Introduction 1
1.1 Motivations and Objectives 1
1.2 Literature Review 2
1.3 Content of the Thesis 3
Chapter 2 Theoretical analysis 5
2.1 Governing Equations 5
2.2 Boundary Condition 8
2.3 Polarization 9
2.4 Vector Potentials 10
Chapter 3 Boundary element method 12
3.1 The Fundamental Solution 12
3.2 Boundary Integral Equation 13
3.3 Discretization of Boundary Integral Equation 15
3.4 Evaluation of and Matrix 17
3.5 Evaluation of the Domain Values 22
Chapter 4 Waveguide problems 23
4.1 Waveguide 23
4.2 Governing Equations and Boundary Conditions 24
4.3 Numerical Result 26
Chapter 5 Homogeneous Scattering problems 56
5.1 Governing Equation and Boundary Condition 56
5.2 Two Dimensional Scattering Problems 57
5.3 Three Dimensional Scattering Problems 75
Chapter 6 Conclusions and Recommendations 84
6.1 Conclusions 84
6.2 Recommendations 85
References 86

References:
1. Y. C. Lin, Application of 3D Helmholtz Equation by the Boundary Element Method to the Wave Propagation Problems, MS thesis, National Taiwan University, Taiwan, 2001.
2. C. M. Fan, The Non- Singular Boundary Integral Equations Analysis to Some Engineering Problems, MS thesis, National Taiwan University, Taiwan, 2001.
3. Q. Y. Lee, Finite Element Method for the Analysis of the Wave Propagation Problems, MS thesis, National Taiwan University, Taiwan, 2001.
4. M. A. Jaswon, Integral equation methods in potential theory, Proc. Roy. Soc. Lond. Vol. A 275, pp. 23-32, 1963
5. G. T. Symm, Integral equation methods in potential theory, Proc. Roy. Soc. Lond. Vol. A 275, pp. 33-46, 1963
6. C. A. Brebbia, Boundary element method, Pentech Press,1978.
7. C. A. Berbbia, The Boundary Element Method for Engineers, Pentech Press, London, 1978
8. C. A. Brebbia, The Boundary Element Method in Engineering Practice, Engineering Analysis, 1984.
9. C. A Brebbia, J. Telles, and L. Wrobel, Boundary Element Method Theory and Application in Engineering. Springer-Verlag, 1984.
10. C. A. Brebbia, and J. Dominguej, Boundary Element, An Inntroduction Course, McGraw-Hill, 1989
11. C. A. Berbbia, Topics in Boundary Element Research, Vol. 6, Electromagnetic Applications, Springer-Verlag, 1989.
12. A. A. Becker, The Boundary Element Method in Engineering, Mcgraw-Hill, 1992.
13. 陳正宗,洪巨集基,邊界元素法,第二版,新世界出版社,1992.
14. P. K. Kythe, An Introduction to Boundary Element Methods, CRC Press, Inc., 1995.
15. Lord Rayleigh, On the Passage of Electric Waves Through Tubes, Philos. Mag., Vol. 43, pp. 125-132, 1897. Printed in Collected Papers, Cambridge Univ. Press, 1903.
16. K. S. Packard, The Origin of waveguide: A Case of Multiple Rediscovery, IEEE Trans. Microwave Theory and Techniques, Vol. MTT-32, pp. 961-969, September 1984.
17. A. S. Omar, and K. F. Schunemann , Application of the Generalized Spectral-Domain Technique to the Analysis of Rectangular Waveguides with Rectangular and Circular Metal Inserts, IEEE Transactions on Microwave Theory and Technique, Vol 39, No 6, June 1991.
18. Z. S. Sacks, and J. F. Lee, A finite-element Time-domain Method Using Prism Elements for Microwave Cavities, IEEE Transaction on Electromagnetic Compatibility, Vol. 37, pp. 519-527, November, 1995.
19. G. C. Hsiao, R. E. Kleinman, D.-Q. Wang, Applications of boundary integral equation methods in 3D electromagnetic scattering, Journal of Computational and Applied Mathematics 104 89-110, 1999
20. K. Morgan, O. Hassan, J. Perarie, A time domain unstructured grid approach to the simulation of electromagnetic scattering in piecewise homogeneous media. Computer Methods in Applied Mechanics and Engineering, Vol 134., pp17-36, 1996.
21. K. Morgan, P. J. Brookes, O. Hassan, N. P. Weatherill, Parallel processing for the simulation of problems involving scattering of electromagnetic waves, Computer Methods in Applied Mechanics and Engineering, Vol 152., pp157-174, 1998.
22. P. D. Ledger, Edge Elements for Waveguide and Scattering Problem, MS thesis, university of Wales, Swansea, 1999.
23. David K. Cheng, Field and Wave Electromagnetics, 2nd ed, Sec. 10.2, Addison-Wesley Pub. Co, 1989.
24. J. J. Bowman, T. B. A Senior, P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, Hemisphere Publishing Corporation, New York 1987.
25. C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, Inc., 1989.
26. R. F. Harrington, Time-Harmonic electromagnetic Fields, New York, NY: McGraw-Hill Book Company, Inc., 1961.
27. A. K. Bhattacharyya, D. L. Sengupta, Radar Cross Section Analysis & Control, Artech House, Inc. 1991.
28. E. F. Knott, J. F. Shaeffer, M. T. Tuley, Radar Cross Section, 2nd ed, Artech House, Inc. 1993.
29. C. L. Chiu, Non-singular Boundary Integral Equation for the Analysis of Electromagnetic Problems, MS thesis, National Taiwan University, Taiwan, 2002.
30. C. Y. Lin, Finite Element Method for the Analysis of some electromagnetic Problems, MS thesis, National Taiwan University, Taiwan, 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔