(3.235.108.188) 您好!臺灣時間:2021/02/27 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林敏郎
研究生(外文):Lin,Min-Lang
論文名稱:RC柱耐震補強與中空雙鋼管混凝土柱力學行為研究
論文名稱(外文):Seismic Retrofit of RC Columns and Mechanical Behavior of Double-Skinned CFT Columns
指導教授:蔡克銓蔡克銓引用關係
指導教授(外文):Tsai,Keh-Chyuan
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:330
中文關鍵詞:耐震補強八角形包覆雙鋼管混凝土柱
外文關鍵詞:Seismic RetrofitOctagonal JacketingDouble-Skinned CFT
相關次數:
  • 被引用被引用:2
  • 點閱點閱:211
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
摘 要
本研究主要針對矩形斷面鋼筋混凝土柱進行補強研究、並研究中空雙鋼管填充混凝土柱之耐震行為,鋼筋混凝土柱補強研究包括承受低軸力的鋼筋混凝土橋柱及承受高軸力之建築結構鋼筋混凝土柱,中空雙鋼管填充混凝土柱的研究則主要針對大徑厚比之圓形斷面鋼管填充混凝土柱。
矩形斷面鋼筋混凝土橋柱補強方面,本研究針對國內老舊橋柱可能發生的主筋搭接及剪力破壞兩問題進行縮尺寸試驗以探討其受震行為,並採用國外所發展的橢圓形鋼板包覆補強方案進行補強,探討橢圓形鋼板包覆補強方案應用於補強國內橋柱之補強效果,本研究亦研發更經濟且能減少包覆補強斷面積之「八角形包覆方案」及其補強設計理論,經由縮尺寸試驗探討其補強效果與補強後橋柱耐震行為,最後經由實尺寸橋柱補強試驗,以考驗應用於真實橋柱的補強效果。研究結果顯示,塑鉸區主筋搭接或剪力強度不足的老舊橋柱,在未達設計強度前均已產生無韌性的搭接或剪力破壞,而橢圓形鋼板包覆與八角形鋼板包覆均能有效的提供側向圍束力與增加剪力強度,而避免主筋搭接或剪力破壞的發生,並使橋柱強度與韌性能力獲得有效的改善,且由實尺寸矩形鋼筋混凝土橋柱補強試驗已証實八角形鋼板包覆可成功的補強塑鉸區主筋搭接之實際橋柱。
針對承受高軸向力之建築結構矩形鋼筋混凝土柱所進行耐震行為及補強研究結果顯示,90度彎鉤型式閉合箍筋受力後將發生鬆脫而致使鋼筋混凝柱產生無韌性之破壞;採用圓形、八角形之鋼板或碳纖維包覆補強將可以有效提升鋼筋混凝土柱的軸向強度及韌性能力;若採用矩形包覆方式,不論包覆材料為鋼板或碳纖維,均無法避免面外鼓出變形的發生而造成包覆補強材料喪失大部份之圍束能力,其補強效果不如圓形或八角形包覆方式且不經濟。本研究提出的八角形碳纖維包覆補強施工方法,施作方便且不需大型機具,應用於高層鋼筋混凝土建築之補強作業具有其優勢。
中空雙鋼管混凝土柱之研究結果顯示,外鋼管徑厚比150、內鋼管徑厚比100之雙鋼管填充混凝土柱試體於承受25%軸向應力下仍具有良好的強度及韌性性能,由於一般橋柱所受軸向應力多低於25%,因此大徑厚比之雙鋼管填充混凝土柱適合應用於大部份之橋梁工程。
Abstract
The objective of this research is to investigate the seismic performance of rectangular RC columns retrofitted by external jackets for the bridge and building columns under low and high axial stresses, respectively. The research also focuses on the mechanical behavior of the double-skinned concrete filled steel tubular (DSCFT) columns with a large diameter-thickness (D/t) ratio.
For the retrofit of rectangular RC columns, this research focuses on the seismic retrofit to prevent lap-splice or shear failure of bridge columns designed according to the pre-1987 Taiwan standards. In this research, the octagonal steel-jacketing techniques improving the seismic performance of rectangular reinforced concrete bridge columns have been developed. Effectiveness of using the elliptical and rectangular steel jackets on seismic retrofit of rectangular columns is also assessed and validated by the tests. Tests conducted on the 0.4-scale specimens confirm that seismic performance of rectangular RC bridge columns can be significantly and equally enhanced by elliptical or octagonal steel jacket. Rectangular steel jacketing can improve shear strength, but its deficiency in improving seismic flexural performance is evidenced. Test results of the full scale specimen indicate that the proposed octagonal steel jacketing scheme can successful prevent the lap-splice failure for real bridge applications. Tests confirm that a retrofit scheme excellent in performance but with a smaller cross-sectional area than that in the elliptical jacketing has been successfully developed.
Axial compression test results for square RC columns incorporating various kinds of jacketing schemes and Taiwanese construction practice in the placement of stirrups are also presented. The jacketing schemes include circular, octagonal and square shapes. The jacketing materials vary from steel plate to carbon fiber reinforced polymer (CFRP) composites. It is found from the monotonic axial load test results that the failure mode of the benchmark non-retrofitted specimen is identical to the real damage cases observed in the 1999 Chi-Chi Taiwan earthquake. The benchmark specimen developed its design strength but a non-ductile failure mode occurred soon after the peak load was reached. Among the retrofitted specimens, the steel jacketed specimens exhibit not only greatly enhanced load carry capacity but also excellent ductility performance. Test results show that CFRP sheets are effective in increasing the column axial strength, but the sheets could fracture suddenly in high strain conditions due to their brittle material characteristics. Test results indicate that CFRP sheet wrapping in general is not as effective as steel jacketing in improving the axial ductility capacity of RC columns. However, the proposed octagon-shaped CFRP wrapping scheme exhibits an improved performance compared to rectangular-wrapped columns using the same layers of CFRP sheets. Tests confirm that all octagonal steel or CFRP jacketed specimens have axial loading capacities more than 2 times the nominal capacity.
In the study of DSCFT columns, the diameter-thickness (D/t) ratio and the hollowness ratio were chosen as main parameters in designing the specimens. A total of 18 specimens were tested under varied combinations of axial and flexural loads, and two specimens were tested under a combination of constant axial load and cyclically increasing bending for comparison. Test results concluded that the DSCFT columns can effectively provide strength and deformation capacity even with a large D/t ratio. The DSCFT columns can have an optimal strength performance if the applied axial load is less than 25% of the axial capacity.
目  錄
摘要 i
目錄 ii
表目錄 vii
圖目錄 viii
照片目錄 xvi
第一章 緒論 1-1
1.1 研究動機與目的 1-1
1.2 研究方法與內容 1-4
第二章 矩形橋柱補強設計理論 2-1
2.1 前言 2-1
2.2 矩形橋柱補強之研究回顧 2-2
2.3 鋼筋混凝土橋柱理論分析 2-4
2.3.1 混凝土之應力與應變模型 2-4
2.3.2 縱向鋼筋之應力與應變模型 2-7
2.3.3 橋柱斷面彎矩與曲率分析 2-9
2.3.4 橋柱位移韌性容量計算 2-9
2.4 矩形橋柱補強設計研究 2-11
2.4.1 鋼板包覆斷面形狀設計 2-11
2.4.2 鋼板包覆之剪力補強設計 2-12
2.4.2.1 橋柱剪力補強設計原理 2-12
2.4.2.2 剪力需求計算 2-13
2.4.2.3 剪力容量計算 2-13
2.4.2.4 補強鋼板厚度設計 2-17
2.4.3 鋼板包覆之韌性補強設計 2-19
2.4.3.1 橋柱韌性補強設計原理 2-19
2.4.3.2 鋼板包覆補強之圍束力計算 2-19
2.4.3.3 各規範之最小耐震橫向鋼筋量規定 2-21
2.4.3.4 滿足各規範最小耐震橫向鋼筋量之韌性補強設計 2-23
2.4.3.5 位移韌性補強設計 2-26
2.4.3.6 鋼板包覆補強高設計 2-26
2.4.4 主筋搭接長度不足之包覆補強設計 2-27
第三章 矩形RC橋柱耐震補強試驗研究 3-1
3.1 試體規劃與設計 3-1
3.1.1 塑鉸區主筋搭接試體 3-1
3.1.2 剪力強度不足試體 3-1
3.2 補強設計 3-2
3.2.1 塑鉸區主筋搭接試體 3-2
3.2.2 剪力強度不足試體 3-2
3.3 試體材料強度 3-3
3.4 試驗量測系統 3-3
3.5 試驗方法 3-4
3.6 軸向力修正 3-4
3.7 實驗觀察 3-5
3.7.1 試體BMRL100 3-5
3.7.2 試體SRL1 3-6
3.7.3 試體SRL2 3-6
3.7.4 試體BMRS 3-7
3.7.5 試體SRS1 3-8
3.7.6 試體SRS2 3-8
3.8 試驗結果分析 3-9
3.8.1 試體水平側向力與側向位移角關係 3-9
3.8.2 試體側向強度比較 3-11
3.8.3 試體曲率分佈比較 3-12
3.8.4 試體主筋應變分析 3-12
3.8.5 試體箍筋應變分析 3-13
3.8.6 試體包覆鋼板應變分析 3-15
3.8.7 試體位移韌性比較 3-16
3.8.8 試體消能比較 3-17
3.9 補強鋼板厚度探討 3-18
3.10 非線性擬靜態反覆載重分析 3-18
第四章 實尺寸矩形RC橋柱之八角形鋼板包覆補強試驗 4-1
4.1 前言 4-1
4.2 試體設計及製作 4-1
4.3 材料性質試驗 4-3
4.4 試驗裝置及試驗方法 4-3
4.4.1 試驗裝置 4-3
4.4.2 試驗方法 4-6
4.4.3 側向力修正 4-6
4.5 試驗結果分析與討論 4-6
4.5.1 試體LSRL-R實驗觀察 4-6
4.5.2 試體LSRL-R水平側向力與側位移角關係 4-8
4.5.3 試體LSRL-R曲率分佈 4-8
4.5.4 試體LSRL-R主筋應變分析 4-8
4.5.5 試體LSRL-R箍筋應變分析 4-9
4.5.6 試體LSRL-R包覆鋼板應變分析 4-9
第五章 RC柱承受高軸向力之耐震行為與補強研究 5-1
5.1 前言 5-1
5.2 建築規範耐震相關規定 5-2
5.3 耐震韌性補強設計 5-3
5.4 試體規劃與設計 5-4
5.5 試體包覆補強設計 5-5
5.5.1 鋼板包覆補強 5-5
5.5.2 碳纖維複合材料包覆補強 5-5
5.6 試體澆灌與補強施工 5-6
5.6.1 鋼筋混凝土柱施作 5-6
5.6.2 鋼板包覆補強施作 5-6
5.6.3 碳纖維複合材料包覆補強施作 5-6
5.7 材料性質試驗 5-7
5.8 試驗裝置及試驗方法 5-7
5.9 試驗量測系統 5-8
5.10 實驗觀察 5-9
5.10.1 標準試體BM 5-9
5.10.2 鋼板包覆補強試體 5-9
5.10.3 碳纖維複合材料包覆補強試體 5-9
5.11 試驗結果分析與討論 5-10
5.11.1 試體極限軸向強度 5-10
5.11.2 軸向載重與軸向應變關係 5-11
5.11.3 軸向應變與側向變形關係 5-12
5.11.4 軸向應變與主鋼筋應變關係 5-14
5.11.5 軸向應變與箍筋應變關係 5-14
5.11.6 軸向應變與包覆補強材料應變關係 5-15
5.12 理論強度分析 5-16
5.12.1 混凝土模型 5-16
5.12.2 縱向主鋼筋模型 5-17
5.12.3 分析結果討論 5-17
第六章 中空雙鋼管填充混凝土柱耐震行為研究 6-1
6.1 前言 6-1
6.2 文獻回顧 6-1
6.2.1 中空雙鋼管填充混凝土柱的相關研究 6-1
6.2.2 鋼管混凝土柱的相關研究 6-3
6.2.3 鋼管混凝土之相關設計規範 6-5
6.2.3.1 美國AISC LRFD規範 6-6
6.2.3.2 美國ACI 318-99規範 6-8
6.2.3.3 歐州Eurocode 4規範 6-9
6.2.3.4 日本AIJ規範 6-11
6.2.3.5 中國大陸DL/T 5085-1999規範 6-16
6.2.3.6 鋼骨鋼筋混凝土構造設計規範與解說研究 6-18
6.3 試驗研究計劃 6-19
6.3.1 試體設計與製作 6-20
6.3.2 材料性質試驗 6-21
6.3.3 試驗裝置及試驗方法 6-21
6.3.3.1 變偏心軸向載重試驗 6-22
6.3.3.2 固定軸力、四點彎矩試驗 6-24
6.3.3.3 固定軸力、反覆四點彎矩試驗 6-27
6.4 試驗觀察 6-28
6.4.1 純軸壓強度試驗 6-28
6.4.2 偏心載重試驗 6-29
6.4.3 固定軸力、四點彎矩試驗 6-29
6.4.4 固定軸力、反覆四點彎矩試驗 6-30
6.5 試驗結果分析與討論 6-31
6.5.1 純軸壓強度試驗 6-31
6.5.1.1 極限軸壓強度 6-31
6.5.1.2 峰值應變 6-32
6.5.1.3 軸向複合彈性模數 6-32
6.5.1.4 韌性比 6-32
6.5.1.5 試體應變分析 6-33
6.5.2 偏心載重試驗 6-34
6.5.3 固定軸力、四點彎矩試驗 6-34
6.5.3.1 極限變矩強度 6-34
6.5.3.2 撓曲剛度 6-35
6.5.3.3 韌性比 6-36
6.5.3.4 試體應變分析 6-36
6.5.4 固定軸力、反覆四點彎矩試驗 6-37
6.6 理論分析 6-38
第七章 結論與建議 7-1
7.1 結論 7-1
7.2 建議 7-3
參考文獻 R-1
參考文獻
1. 林敏郎、蔡克銓,「RC橋柱系統耐震補強」,土木技術,第三十六期,二月,第40-53頁,2001。
2. 劉俊谷,「實尺寸矩形RC橋柱鋼板補強試驗及分析」,國立台灣大學土木工程研究所碩士論文,蔡克銓指導,2001。
3. 張劉權,「泛用型非線性靜動態平面結構分析程式之研發」,國立台灣大學土木工程研究所碩士論文,蔡克銓指導,2001。
4. 徐耀賜、吳東昇、李一聖,「台灣地區橋梁耐震設計之沿革」,中國土木水利,第二十七卷,第二期,八月,第104-111頁,2000。
5. 黃震興,「橋樑耐震補強準則」,財團法人台灣營建院,1998。
6. 蔡孟豪、張國鎮、黃震興,「921大地震之公路橋樑耐震探討」,中國土木水利,第二十六卷,第三期,民國八十八年十一月,第45-59頁,1999。
7. 交通部,「公路橋梁耐震設計規範」,幼獅文化事業公司,1995。
8. 黃炯憲、葉勇凱、劉季宇、蔡克銓、王勝輝,「方形加勁鋼管混凝土柱受軸壓行為之探討(一)」,國家地震工程研究中心,研究報告,NCREE-99-019,1999。
9. 黃炯憲、鍾立來、葉勇凱、葉錦勳、盧煉元、劉季宇,「鋼管混凝土構材研究之回顧」,國家地震工程研究中心,研究報告NCREE-98-012,1998。
10. 陳誠直、翁正強、林義閩、李健銘,「鋼骨鋼筋混凝土柱及梁柱構材強度與耐震行為研究(一)」,內政部建築研究所專題研究計畫成果報告MOIS881012-1,1999。
11. 鍾善桐,「高層鋼管混凝土結構」,哈爾濱,黑龍江科學技術出版社,1999。
12. 鍾善桐,「鋼管混凝土結構」,哈爾濱,黑龍江科學技術出版社,1994。
13. 韓林海,「鋼管混凝土結構」,北京,科學出版社,2000。
14. 林江麟,「中空雙鋼管混凝土複合構件承載行為研究」,國立中央大學碩士論文,許協隆教授指導,1997。
15. 鄭立輝,「局部填注之中空雙鋼管混凝土複合構件韌性行為研究」,國立中央大學碩士論文,許協隆教授指導,1998。
16. 李名達,「反覆載重下加勁式雙鋼管混凝土構件行為研究」,國立中央大學碩士論文,許協隆教授指導,1999。
17. 許協隆、林江麟,「中空雙鋼管混凝土構件承載行為」,第四屆結構工程研討會論文,台北,1998。
18. 張素梅,鍾善桐,「空心鋼管混凝土中核心混凝土軸心受壓本構關係的研究」,哈爾濱建築工程學報,第23卷,第2期,pp. 9-17,1990。
19. 張素梅,鍾善桐,「空心鋼管混凝土組合材料一次壓縮工作性能的研究」,哈爾濱建築工程學報,第23卷,第2期,pp. 18-25,1990。
20. 張素梅,鍾善桐,「空心鋼管混凝土的研究及構件計算」,土木工程學報,第27卷,第3期,pp. 24-32,1994。
21. 張素梅,鍾善桐,「空心鋼管混凝土受彎構件理論分析方法」,哈爾濱建築工程學報,第24卷,第4期,pp. 32-37,1991。
22. 徐國林,陳洁,「離心鋼管混凝土結構的應用與發展」,哈爾濱建築大學學報,第34卷增刊,pp. 80-83, 2001。
23. 金傳良,葛中桂,曲晨,傅軍,張立,「薄壁離心鋼管混凝土構件抗扭試驗研究」,哈爾濱建築大學學報,第34卷增刊,pp. 70-73, 2001。
24. AISC, Specification for Structural Steel Building: Load and Resistance Factor Design, Chapter I, September, 1986.
25. AASHTO, Standard Specifications for Highway Bridges, 15th Edition, the American Associiation of State Highway and Transportation Officials, Washington, D. C., 1992.
26. Aboutaha, R.S., Engelhardt, M. D., Jirsa, J. O., and Kreger, M. E., “Retrofit of Concrete Columns with Inadequate Lap Splices by the Use of Rectangular Steel Jackets,” Earthquake Spectra, Journal of EERI, V. 12, No. 4, Nov., pp. 693-714, 1996.
27. Architectural Institute of Japan (AIJ), Standard for Structural Calculation of Steel Reinforced Concrete Structures, 1991.
28. Architectural Institute of Japan (AIJ), Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures, 1997 (in Japanese).
29. ASCCS Seminar Report, Concrete Filled Steel Tubes — A Comparison of International Codes and Practices, Innsbruck, Austria, 1997.
30. ATC-32, Improved Seismic Design Criteria for California Bridges: Provisional Recommendations, Applied Technology Council, Redwood City California, 1996.
31. Aschheim, M., Moehle, J. P., Shear Strength and Deformability of Reinforced Concrete Bridge Columns Subjected to Inelastic Cyclic Displacement, EERC Report No.92/04, University of California, Berkeley, California, 1992.
32. Aschheim, M., Moehle, J.P., Design and Evaluation of Reinforced Concrete Bridges for Seismic Resistance, EERC Report No.97/04, University of California, Berkeley, California, 1997.
33. Aschheim, M., Moehle, J. P., and Werner, S.D., Deformability of Concrete Columns, Report to California Department of Transportation under Contract Number 59Q122, Dames&Moore, Oakland, California, 1993.
34. Brinckerhoff, P., Bridge Inspection and Rehabilitation-A Practical Guide, John Wiley & Sons, Inc., New York, 1992.
35. Caltrans, Bridge Design Specifications Manual, Californai Department of Transportation, Sacramento, Californai, 1986.
36. Chai, Y.H.,Priestley, M.J.N., Seible, F., “Retrofit of Bridge Columns for Enhanced Seismic Performance,” Proceedings of the U.S.-Japan Workshop on Seismic Retrofit of Bridges, Tsukuba, Japan, Dec, 1990.
37. Chai, Y.H., Priestley, M.J.N. and Seible, F., “Analytical Model for Steel-Jacketed RC Circular Bridge Columns,” Journal of Structural Engineering, ASCE, Vol. 120, No.8, 1994.
38. Chai, Y.H., “An Analysis of the Seismic Characteristics of Steel-Jacketed Circular Bridge Columns,” Earthquake Engineering and Structural Dynamics, Vol. 23, 149-161, 1996.
39. Chai, Y. H., Priestley, M.J.N., Seible, F., Flexural Retrofit of Circular Reinforced Concrete Bridge Columns by Steel Jacketing, Structural System Research Project, Report No. SSRP-91/06, Department of Applied Mechanics and Engineering Science, U.C. San Diego, 1991.
40. Chang, K.C., Chung, L.L., Hwang, S.J., Hwang, J.S., Lee, Y.F. and Tsai, K.C., “Sesimic Retrofit of Reinforced Concrete Bridge Columns,” Proceedings, International Workshop on Mitigation of Seismic Effects on Transportation Structures, Taipei, 1999.
41. Chang, K.C., Chang, D.W., Tsai, M.H., Sung Y.C., ”Seismic Performance of Highway Bridges,” Earthquake Engineering and Engineering Seismology, V.2, March, pp. 55-77, 2000.
42. Furlong, R.W., “Design of Steel-Encased Concrete Beam-Columns,” Journal of the Structural Division, ASCE, Vol. 94, ST1, pp. 267-281, 1968.
43. Furlong, R.W., “Column Rules of ACI, SSLC, and LRFD Compared,” Journal of Structural Engineering, ASCE, Vol. 109, No. 10, pp. 2375-2386, 1984.
44. Furlong, R.W., “Strength of Steel-Encased Concrete Beam Columns,” Journal of the Structural Division, ASCE, Vol. 93, ST5, pp. 113-124, 1967.
45. Gates, J.H., “California Seismic Design Criteria for Bridges,” Journal of Structural Engineering, Journal of Structural Engineering, ASCE, Vol. 114, No. 12, 1988.
46. Hsu, H.L. and Lin, J.L., “Inelastic Behavior of Sandwich Box Column under Combined Loading,” Proceedings of the 6th U.S. National Conference on Earthquake Engineering.
47. Katsuki Takiguchi and Abdullah, ”Experimental Study on reinforced Concrete Column Strengthened with Ferrocement Jacket,” Proceedings of the 12th WCEE, Auckland, New Zealand, 2000.
48. Kawashima, K., “Seismic Design, Seismic Strengthening and Repair of Highway Bridges in Japan,” Proceedings of the First U.S.-Japan Workshop on Seismic Retrofit of Bridges, 1990.
49. Knowles, R.B. and Park, R., “Strength of Concrete Filled Steel Tubular Columns,” Journal of the Structural Division, ASCE, Vol. 95, ST2, pp. 2565-2587, 1969.
50. Knowles, R.B. and Park, R., “Axial Load Design for Concrete filled Steel Tubes,” Journal of the Structural Division, ASCE, Vol. 96, ST10, pp. 2125-2153, 1970.
51. Lin, M.L. and Tsai, K.C., “Steel Jacketing for Seismic Retrofit of Rectangular RC Columns,” Proceedings of the Twelfth KKNN Seminar on Civil Engineering, Taejon, Korea, August 1999.
52. Li, Y.F., Lin, C.T.,and Sung, Y.Y., “A Constitutive Model for Concrete Confined with Carbon Fiber Reinforced Plastics,” Mechanics of Materials, 2002.
53. Mander, J.B., Seismic Design of Bridge Piers, Ph.D. thesis, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 1983.
54. Mander, J.B., Panthaki, F.D.,and Kasalantt, A., ”Low Cycle Fatigue Behavior of Reinforcing Steel,” Journal of Materials in Civil Engineering, ASCE, 6(4), pp.459-468, 1994.
55. Mander, J. B., Priestley, M. J. N.,and Park, R., ”Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Division, ASCE, 114(8), pp.1804, 1988.
56. Mander, J. B., Priestley, M. J. N.,and Park, R., ”Observed Stress-Strain Model for Confined Concrete,” Journal of Structural Division, ASCE, 97(7), pp.1969-1990, 1988.
57. Matsui, C., Mitani, I., Kawano, A., and Tsuda, K., “AIJ Design Method for Concrete Filled Steel Tubular Structures,” International Conference on Composite Construction Conventional and Innovative, Innsbruck, pp.93-116, 1997.
58. Mitani, I., Matsui, C., Kawano, A., and Tsuda, K., “Comparison of Several Codes for Concrete Filled Tubular Beam-Columns,” International Conference on Composite Construction Conventional and Innovative, Innsbruck, pp. 125-134, 1997.
59. Montague, P., “Composite Vessels for Deepwater Operation: the Influence of Shell Length and Severe Damage,” Proceedings of the Institution of Civil Engineers, Part 2, pp. 191-219, 1986.
60. Mirza, S.A. and MacGregor, J.G., “Variability of Mechanical Properties of Reinforcing Bars,” Journal of Structural Division, ASCE, Vol. 105, No.5, 1979.
61. Monti, G., Nuti, C., “Nonlinear Cyclic Behavior of Reinforcing Bars Including Buckling,” Journal of Structural Engineering, ASCE, 118(12), pp.3268-3284, 1992.
62. Nakahara, H., Sakino, K. and Matsumura, K., “Effect of Uncertainties of Material Strengths on Load Carrying Capacity and Ductility of CFT Column,” Proceedings of the Sixth Pacific Structural Steel Conference, pp.1147-1152, Beijing, China, 2001.
63. Ninakawa, T. and Sakino, K., “Inelastic Behavior of Concrete Filled Circular Steel Tubular Columns Subjected to Uniform Cyclic Bending Moment,” Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, Paper No. 1358, 1996.
64. Priestley, M.J.N. and Seible, F., Seismic Assessment and Retrofit of Bridges, Structural System Research Project, Report No. SSRP-91/03, Department of Applied Mechanics and Engineering Science, U.C. San Diego, 1991.
65. Priestley, M.J.N. and Park, P., “Strength and Ductility of Concrete Bridge Columns under Seismic Loading,” ACI Structural Journal, 84(1), pp.61-76, Jan/Feb, 1987.
66. Priestley, M.J.N., Seible, F. and Calvi, G.M., Sesmic Design and Retrofit of Bridges, John Wiely & Sons, Inc., New York, 1996.
67. Priestley, M. J. N., Seible, F., Verma, R., and Xiao, Y., Seismic Shear Strength of Reinforced Concrete Columns, Structural System Research Project, Report No. SSRP-93/06, Department of Applied Mechanics and Engineering Science, U.C. San Diego, 1993.
68. Priestley, M. J. N., Verma, R., and Xiao, Y., “Seismic Shear Strength of Reinforced Concrete Columns,” Journal of Structural Engineering, ASCE, Vol.120, No.8, pp.2310-2329, 1994.
69. Schneider, S.P., “Axially loaded concrete-filled steel tubes,” Journal of Structural Engineering, ASCE, 124(10), pp. 1125-1138, 1998.
70. Sun, Z., Seible, F., and Priestley, M.J.N., Flexural Retrofit of Rectangular Reinforced Concrete Bridge Columns by Steel Jacketing, Structural System Research Project, Report No. SSRP-93/01, Department of Applied Mechanics and Engineering Science, U.C. San Diego, 1993.
71. Takiguchi, K. and Abdullah, “Experimental Study on Reinforced Concrete Column Strengthened with Ferrocement Jacket,” Paper No. 0689, Proceedings of the 12th WCEE, Auckland, New Zealand, 2000.
72. Tsuda, K. and Kojima, N., “Buckling Strength of Steel Concrete Composite Columns,” Proceedings of the Eighth East Asia-pacific Conference on Structural Engineering and Construction, Singapore, 2001.
73. Tsuda, K., Matsui, C. and Mino, E., “Strength and Behavior of Slender Concrete Filled Steel Tubular Columns,” Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand, 2000.
74. Tsuda, K., Matsui, C. and Chung, J., “Simplified Design Formula of Slender Concrete Filled Steel Tubular Beam-Columns,” Proceedings of the 6th ASCCS International Conference on Steel-Concrete Composite Structures, Los Angeles, pp. 457-464, 2000.
75. Verma, R., Priestley, M.J.N. and Seible, F., Assessment of Seismic Response and Steel Jacket Retrofit of Squat Circular Reinforced Concrete Bridge Columns, Structural System Research Project, Report No. SSRP-92/05, Department of Applied Mechanics and Engineering Science, U.C. San Diego, 1992.
76. Wei, S., Mau, S.T., Vipulanandan, C. and Mantrala, S.K., “Performance of New Sandwich Tube under Axial Loading: Experiment,” Journal of Structural Engineering, ASCE, 121(12), pp.1806-1814, 1995.
77. Wei, S., Mau, S.T., Vipulanandan, C. and Mantrala, S.K., “Performance of New Sandwich Tube under Axial Loading: Analysis,” Journal of Structural Engineering, ASCE, 121(12), pp.1815-1821, 1995.
78. Xiao,Y. and Wu,H., “ Retrofit of Rectangular Concrete Columns Using Partially Stiffened Rectilinear Steel Jackets,” Proceedings of 6th ASCCS Conference, Los Angeles, USA, March 22-24, pp845-852, 2000.
79. Xiao, Y., Priestley, M.J.N. and Seible, F., Steel Jacket Retrofit for Enhancing Shear Strength of Short Rectangular Reinforced Concrete Columns, Structural System Research Project, Report No. SSRP-92/07, Department of Applied Mechanics and Engineering Science, U.C. San Diego, 1993.
80. Yang, X., Yuan, W., Chen, G., Fan, L., “Seismic Performance Assessment and Retrofit of Rectangular Bridge Piers with Externally Encased Circular Steel Jackets,” Paper No.1461, Proceedings of the 12th WCEE, Auckland, New Zealand, 2000.
81. Yagishita, F., Kitoh, H., Sugimoto, M., Tanihira, T. and Sonoda, K., “Double Skin Composite Tubular Columns Subjected to Cyclic Horizontal Force and Constant Axial Force,” Proceedings of the 6th ASCCS Conference, Los Angeles, pp. 497-503, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔