跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 10:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:傅宗玫
研究生(外文):Tzung-May Fu
論文名稱:海洋性層積雲邊界層之微物理穩定性分析
論文名稱(外文):Microphysical Stability Analyses in the Stratocumulus-Topped Marine Boundary Layer
指導教授:陳正平陳正平引用關係
指導教授(外文):Jen-Ping Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:141
中文關鍵詞:層積雲氣懸粒子間接效應微物理雲物理氣懸膠海洋性邊界層
外文關鍵詞:Stratocumulusaerosolindirect effectmicrophysicscloud physicsmarine boundary layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:2
本研究分析海洋性層積雲邊界層中雲凝結核(CCN)數量濃度(NCCN)之穩定性,以瞭解連結雲凝結核數量濃度和雲滴數量濃度之各項過程。假設海洋性層積雲邊界層混合均均,NCCN主要受到CCN產生、布朗運動撞併、雲滴的自我收集、雨滴撞併雲滴,以及雨滴清除等過程控制。為確保高精確度並節省計算資源,本研究同時發展一組新的微物理參數法以處理上述過程。
由純粹微物理之觀點,本研究顯證NCCN具有兩個平衡狀態:較低的平衡狀態是CCN產生項和雲滴的自我收集及雨滴撞併雲滴相互拮抗的結果;較高的平衡狀態則代表CCN產生項受布朗運動撞併抵銷。此二平衡狀態(穩定節點)可能獨立存在,亦可能在一定範圍的CCN產生速率(S)下同時存在。由高初始NCCN逐漸降低S所得之NCCN平衡值,與由低初始NCCN逐漸提高S所得之NCCN平衡值變化路徑不同,具有明顯的遲滯效應。對氣懸粒子的第一類間接效應而言,此遲滯效應顯示在初始乾淨的雲層中,污染強度必須達於一臨界值,才會造成雲微物理性質的劇變;另一方面,一旦雲微物理性質被改變,雲層會持續其高NCCN和高反照率狀態。
NCCN達於平衡狀態所需的時間尺度常超過一天,使得動力、輻射、氣懸粒子物理化學和其他微物理機制有機會影響雲生命期和雲覆蓋面積。其中,降水移除雲水是控制實際達成之NCCN平衡值的重要過程。高NCCN時降水中止,使雲水含量不至減少,可能導致雲生命期延長或雲覆蓋面積增加;此結論定性地印證了氣懸粒子的第二類間接效應。

This thesis seeks to improve the current understanding on the processes linking cloud condensation nuclei (CCN) number concentration to cloud droplet number by analyzing the stability of CCN number concentration (NCCN) in the stratocumulus-topped marine boundary layer (STMBL). Under the mixed-layer assumption, NCCN is determined by CCN production, Brownian coagulation, self-collection of cloud droplets, accretion, and scavenging. Microphysics is incorporated with a new set of parameterization schemes, so as to achieve high precision and save computation time.
From a purely microphysical point of view, the present analyses affirm the existence of two separate equilibrium states in NCCN: the lower equilibrium corresponds to particle production being counter-balanced by self-collection and accretion; the higher equilibrium represents a balance between particle production and Brownian coagulation. These two equilibrium states (stable nodes) can exist independently or coexist in a limited range of particle production rate. The equilibrium NCCN obtained by sweeping through a range of CCN production rate (S) from high to low (with high initial NCCN) will follow a different path than that of sweeping S from low to high (with low initial NCCN), thus producing a sort of hysteretic curve. With respect to the first indirect effect of aerosols, these findings imply that in a pristine cloud, the pollution rate will have to reach a critical strength before cloud microphysics is significantly affected; on the other hand, once its microphysical properties are altered, the cloud may persist at the high NCCN and high albedo regime.
The timescale for NCCN to reach its equilibrium states often exceeds one day, leaving room for other processes to further regulate cloud lifetime and coverage, including dynamics, aerosol physics and chemistry, radiation, and other microphysics. In particular, the removal of cloud water content (qc) by precipitation proves to be an important factor toward the realization of stable nodes. At high NCCN precipitation is shut down and qc retains, which may in turn lead to prolongation of cloud lifetime or extension of cloud cover; these findings qualitatively confirm the second indirect effect of aerosols.

Table of Contents
List of Tables viii
List of Figures ix
Acknowledgement xviii
Chapter 1 Introduction 1
Chapter 2 The Stratocumulus-Topped Marine Boundary Layer 5
2.1 Coverage and structure of the STMBL 5
2.2 Aerosol properties in the STMBL 6
2.2.1 Observed aerosol size distribution 6
2.2.2 Mathematical representation of the aerosol size distribution 7
2.3 Cloud properties in the STMBL 7
2.3.1 Observed cloud microstructure 7
2.3.2 Mathematical representation of cloud droplet size distribution 8
2.3.2.1 Khrgian — Mazin distribution 8
2.3.2.2 Lognormal distribution 9
2.4 Cloud condensation nuclei 10
2.4.1 General definition of cloud condensation nuclei 10
2.4.2 Cloud condensation nuclei in the STMBL 11
2.5 Microphysical processes contributing to NCCN variation in the STMBL 12
2.6 Summary 13
Chapter 3 Numerical Methods for Microphysical Processes 15
3.1 Parameterization strategy 15
3.2 Brownian coagulation of accumulation mode aerosols 16
3.2.1 Kernel 16
3.2.2 Parameterization 18
3.3 Self-collection and autoconversion 18
3.3.1 Kernel 18
3.3.2 Parameterization 20
3.4 Accretion 21
3.4.1 Kernel 21
3.4.2 Parameterization 22
3.5 Scavenging of aerosols by rain 23
3.5.1 Kernel 23
3.5.1.1 Brownian diffusion and phoretic forces 24
3.5.1.2 Impaction 26
3.5.2 Parameterization 27
3.6 Comparisons with Chen et al. (2000) microphysics parameterization 28
3.6.1 Self-collection of cloud droplets 28
3.6.2 Autoconversion 29
3.6.3 Accretion 29
3.7 Summary 30
Chapter 4 A Steady-State Model of the Stratocumulus-Topped Marine Boundary Layer 31
4.1 Mixed-layer in steady state 31
4.2 Cloud condensation nuclei number concentration variation 32
4.2.1 Source of cloud condensation nuclei 33
4.2.2 Brownian coagulation 33
4.2.3 Self-collection 33
4.2.4 Autoconversion and accretion 34
4.2.5 Scavenging 35
4.3 Summary 36
Chapter 5 Results 38
5.1 Phase diagram of NCCN in a steady-state STMBL 38
5.1.1 Phase diagram of NCCN using the present microphysical parameterizations 38
5.1.2 Comparison with microphysical parameterization by Baker (1993) 39
5.2 Effects of particle production rate on NCCN bistability 40
5.2.1 NCCN stability as functions of S 40
5.2.2 Hysteresis effect 41
5.2.3 Implication for the first indirect effect 41
5.3 Timescales for reaching NCCN equilibrium 43
5.4 Interference with NCCN stability by cloud water content variation 44
5.4.1 Effects of cloud water content on NCCN bistability 44
5.4.2 Comparison of tN and cloud water removal timescale 46
5.4.3 Co-evolution of NCCN and qc 47
5.5 Sensitivity of NCCN stability to microphysical properties 48
5.5.1 Effects of cloud droplet size distribution width 49
5.5.2 Effects of aerosol origin 49
5.5.3 Effects of sea spray 49
5.5.4 Comparison with microphysical parameterizations by Chen et al. (2000) 51
5.6 Comparison with Gerber (1996) 51
5.7 Summary and conclusion 52
Chapter 6 Concluding Remarks 54
6.1 Summary 54
6.2 Other interference with NCCN stability 55
6.3 Future perspectives 56
References 58
Appendix A List of Symbols 64
Appendix B Collision Efficiency for Cloud and Rain 70
Appendix C Coalescence Efficiency 74

Abdul-Razzak, H., S. J. Ghan, and C. Rivera-Carpio, 1998: A parameterization of aerosol activation. Part I: Single aerosol type. J. Geophys. Res., 103, 6123-6132.
Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1993: Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds. Science, 262, 226-229.
──, ──, and ──, 1994: Reassessing the dependence of cloud condensation nucleus concentration on formation rate. Nature, 367, 445-447.
Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227-1230.
Andreas, E. L., 1998: A new sea spray general function for wind speeds up to 32 m s-1. J. Atmos. Sci., 28, 2175-2184.
──, J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, 1995: The spray contribtion to net evaporation from the sea: a review of recent progress. Bound.- Layer Meteor., 72, 3-52.
Baker, M. B., 1993: Variability in concentrations of cloud condensation nuclei in the marine cloud-topped boundary layer. Tellus, 45B, 458-472.
──, and R. J. Charlson, 1990: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature, 345, 142-145.
──, R. G. Corbin, and J. Latham, 1980: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106, 581-598.
Beard, K. V., and H. T. Ochs, III, 1984: Collection and coalescence efficiencies for accretion. J. Geophys. Res., 89, 7165-7169.
Böhm, J. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 2419-2427.
──, 1992a: A general hydrodynamic theory for mixed-phase microphysics: Part I. Drag and fall speed of hydrometers. Atmos. Res., 27, 253-274.
──, 1992b: A general hydrodynamic theory for mixed-phase microphysics. Part II: collision kernels for coalescence. Atmos. Res., 27, 275-290.
──, 1994: Theoretical collision efficiencies for riming and aerosol impaction. Atmos. Res., 32, 171-187.
──, 1999: Revision and clarification of “A general hydrodynamic theory for mixed-phased microphysics”. Atmos. Res., 52, 167-176.
Bott, A., 1999: A numerical model of the cloud-topped planetary boundary-layer: chemistry in marine stratus and the effects on aerosol particles. Atmos. Environ., 33, 1921-1936.
Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect: a sensitivity study using two general circulation models. Tellus, 47B, 281-300.
Brechtel, F. J., and S. M. Kreidenweis, 1998: Air mass characteristics, aerosol particle number concentrations, and number size distributions at Macquarie Island during the First Aerosol Characterization Experiment (ACE1). J. Geophys. Res., 103, D13, 16,351 — 16,367.
Capaldo, K. P., P. Kasibhatla, and S. N. Pandis, 1999: Is aerosol production within the remote marine boundary layer sufficient to maintain observed concentrations? J. Geophys. Res., 104, D3, 3483-3500.
Chen, J.-P., and D. Lamb, 1994: Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part I: Description of the microphysical model. J. Atmos. Sci., 51, 2613-2630.
──, S.-T. Liu, and M.-H. Lo, 2000: Physically-based two-moment bulk-water parameterization for warm cloud microphysics. Proc., 13th Int. Conf. on Clouds and Precipitation, Reno, NV, International Committee on Clouds and Precipitation, 565-568.
Durkee, P. A., K. J. Noone, and R. T. Bluth, 2000: The Monterey area ship track experiment. J. Atmos. Sci., 57, 2523-2541.
Easter, R. C., and L. K. Peters, 1994: Binary homogeneous nucleation: temperature and relative humidity fluctuations, nonlinearity, and aspects of new particle production in the atmosphere. J. Appl. Meteorol., 33, 775-784.
Feingold, G., S. M. Kreidenweis, B. Stevens, and W. R. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 101, D16, 23,391-21,402.
Fu, T.-M., and J.-P. Chen, 2001: Effect of microphysical processes on CCN number concentration in the marine boundary layer. Preprints, 7th National Conference in Atmospheric Sciences, Taipei, R.O.C., National Science Council, 254-256.
Fuchs, N. A., 1964: Mechanics of aerosols. Translated by R. E. Daisley and M. Fuchs. Pergamon.
Gerber, H., 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53, 1649-1662.
Ghan, S. J., C. C. Chuang, and J. E. Penner, 1993: A parameterization of cloud droplet nucleation. Part I: single aerosol type. Atmos. Res., 30, 197-222.
──, ──, R. C. Easter, and J. E. Penner, 1995: A parameterization of cloud droplet nucleation. Part II: multiple aerosol types. Atmos. Res., 36, 39-54.
Grover, S. N., H. R. Pruppacher, and A. E. Hamielec, 1977: A numerical determination of the efficiency with which spherical aerosol particles collide with spherical water drops due to inertial impaction and phoretic and electrical forces. J. Atmos. Sci., 34, 1655-1663.
Haaf, W., and R. Jaenicke, 1980: Results of improved size distribution measurements in the Aitken range of atmospheric aerosols. J. Aerosol Sci., 11, 321-330.
Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys., 38, 4, 513-543.
Hegg, D. A., 2001: The impact of clouds on aerosol populations. IGAC newsletter, 23, [http://web.mit.edu/igac/www/newsletter/igac23/hegg.html]
──, and P. V. Hobbs, 1982: Measurements of sulfate production in natural clouds. Atmos. Environ., 16, 2663-2668.
Heymsfield, A. J., 1993: Microphysical structures of stratiform and cirrus clouds. Aerosol-Cloud-Climate Interactions, P. V. Hobbs, Ed., Academic Press, 1-31.
Hoppel, W. A., J. W. Fitzgerald, G. M. Frick, R. E. Larson, and E. J. Mack, 1989: Atmospheric Aerosol Size Distributions and Optical Properties in the Marine Boundary Layer over the Atlantic Ocean. NRL Report 9188, Washington, DC.
Hoppel, W. A., G. M. Frick, J. W. Fitzgerald, and R. E. Larson, 1994: Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have on aerosol size distribution. J. Geophys. Res., 99, D7, 14,443-14,459.
IPCC, 2001: Climate Change 2001: the scientific bases. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds. Cambridge University Press, 881 pp.
Jameson, A. R., and A. B. Kostinski, 2001: What is a raindrop size distribution? Bull. Amer. Meteor. Soc., 82, 1169-1177.
Jaeker-Voirol, A., and P. Mirabel, 1989: Heteromolecular nucleation in the sulfuric acid-water system. Atmos. Environ., 23, 2053-2057.
Jaenicke, R., 1993: Tropospheric aerosols. Aerosol-Cloud-Climate Interactions, P. V. Hobbs, Ed., Academic Press, 1-31.
King, M. D., S. -C. Tsay, and S. Platnick, 1994: In situ observations of the indirect effects of aerosols on clouds. Aerosol Forcing of Climate, R. J. Charlson and J. Heintzenberg, Eds., Wiley, 227-248.
Kuo, H.-C., and W. H. Schubert, 1988: Stability of cloud-topped boundary layers. Quart. J. Roy. Meteor. Soc., 114, 887-916.
Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292-309.
Lo, M.-H., 2001: Aerosol and stratocumulus interaction. M.S. these, Department of Atmospheric Sciences, National Taiwan University, 122 pp. (in Chinese)
Low, T. B., and R. List, 1982: Collision, coalescence and breakup of raindrops. Part I: experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 1951-1606.
Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 1823-1842.
McFarquhar, G. M., and A. J. Heymsfield, 2001: Parameterizations of INDOEX microphysical measurements and calculations of cloud susceptibility: Applications for climate studies. J. Geophys. Res., 106, D22, 28,675-28,698.
Mészáros, A., and K. Vissy, 1974: Concentration, size distribution and chemical nature of atmospheric aerosol particles in remote ocean areas. J. Aerosol Sci., 5, 101-109.
Nicholls, S., 1984: The dynamics of stratocumulus: aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110, 783-820.
──, and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc., 112, 431-460.
Pattison, M. J., and S. E. Belcher, 1999: Production rates of sea-spray droplets. J. Geophys. Res., 104, C8, 18,397-18,407.
Pinsky, M., A. Khain, and M. Shapiro, 1999: Collisions of small drops in a turbulent flow. Part I: Collision efficiency. Problem formulation and preliminary results. J. Atmos. Sci., 56, 2585-2600.
──, ──, and ──, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742-764.
Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishes, 954 pp.
Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793-1796.
Russell, L. M., S. N. Pandis, and J. H. Seinfeld, 1994: Aerosol production and growth in the marine boundary layer. J. Geophys. Res., 99, 20,989-21,003.
Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): the first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64, 779-784.
Seinfeld, J. H., and R. C. Flagan, 1999: Aerosol-cloud interactions and indirect forcing. IGAC newsletter, 17, [http://www.igac.unh.edu/newsletter/igac17/cloud.html]
──, and S. N. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, 1326 pp.
Slinn, W. G. N., 1977a: Precipitation scavenging: some problems, approximate solutions, and suggestions for future research. Precipitation Scavenging (1974), ERDA Symposium Series, Champaign, Ill., Oct. 14-18, 1974, Richard G. Semonin and Robert W. Beadle (Coordinators), pp. 1-60, CONF-741003, NTIS.
──, 1977b: Proposed definition for precipitation scavenging. Precipitation scavenging (1974), ERDA Symposium Series, Champaign, Ill., Oct. 14-18, 1974, Richard G. Semonin and Robert W. Beadle (Coordinators), pp. 1-60, CONF-741003, NTIS.
Su, S.-H., 2001: Air-sea interaction in the marine stratocumulus topped boundary layer. M.S. these, Department of Atmospheric Sciences, National Taiwan University, 106 pp. (in Chinese)
Telford, J. W., 1975: Turbulence, entrainment, and mixing in cloud dynamics. Pure Appl. Geophys., 113, 1067-1084.
──, and P. B. Wagner, 1981: Observations of condensation growth determined by entity type mixing. Pure Appl. Geophys., 119, 934-965.
Toon, O. B., 1995: Modeling the relationships between aerosol properties and the direct and indirect effects of aerosols on climate. Aerosol forcing of climate, R. J. Charlson and J. Heintzenberg, Eds., John Wiley & Sons, 197-213.
Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 1251-1256.
──, 1991: Aerosol, clouds and radiation. Atmos. Environ., 25A, 2435-2442.
Vong, R. J., and D. S. Covert, 1998: Simultaneous observations of aerosol and cloud droplet size spectra in marine stratocumulus. J. Atmos. Sci., 55, 2180-2192.
Wang, P. K., S. N. Grover, and H. R. Pruppacher, 1978: On the effect of electric charges on the scavenging of aerosol particles by clouds and small raindrops. J. Atmos. Sci., 35, 1735-1743.
──, and H. R. Pruppacher, 1977: An experimental determination of the efficiency with which aerosol particles are collected by water drops in subsaturated air. J. Atmos. Sci., 34, 1664-1669.
Warner, J., 1969: The microstructure of cunulus cloud. Part I. General features of the droplet spectrum. J. Atmos. Sci., 26, 1272-1282.
Whitby, K. T., 1978: The physical characteristics of sulfur aerosols. Atmos. Environ., 12, 135-159.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top