跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃維平
論文名稱:二維非靜力模式對颮線之數值模擬
指導教授:許武榮許武榮引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:87
中文關鍵詞:颮線上沖流下沖流傾斜對流對流胞降水雷雨風暴潛在不穩定超大胞
相關次數:
  • 被引用被引用:2
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究內容主要是利用NTU-Purdue非靜力模式,對於颮線作二維架構的模擬,並且在初始條件的設定上,參考了過去相關颮線之數值模擬研究論文,而在環境風場的作用上,我們分別實驗了颮線在環境中是受到低層之垂直風切,以及是受到較為深層結構之垂直風切的影響,觀察其各自的發展情況。然而,在比較過去其他的數值模擬研究論文之後,發現在我們的低層垂直風切之模擬其結果能夠發展出典型的颮線特徵,即上沖流和下沖流相對的分離,在垂直方向上維持著傾斜的對流,而在颮線前也有週期性的對流胞降水的現象,此外,在模擬過程的最後階段之中,整個系統呈現達到準恆定之狀態(quasi-steady state),此與在觀測上的個案,有著相符合的情形,即可能颮線並不一定是要靠不斷的激生對流胞才能維持著系統,只要有完整之傾斜對流機制且有前方充足的水氣補給,颮線就有可能維持穩定而長生命期的狀態。另外在使用比較深層的風切時,可能由於積分時間的關係,在最後的階段裡並沒有明顯的準恆定之狀態出現,但是也有清楚的模擬到颮線特殊的傾斜對流之構造,而且在下沖流的部份也發現到,其比低層風切的模擬結果有著更深厚和強度更強的情形發生,所以這也證明了在使用比較深厚的風切時,要發展成明顯的傾斜對流機制是需要比較長的時間的。實驗中我們也發現了這一數值模擬的議題具有很強的 ” model dependent ”,也就是說即使是使用相同的初使條件、相同的假設等,不同的模式所模擬出來的結果也都不盡相同,而即便是使用相同的模式,若稍稍的改變一點初始條件,在實驗結果上也會有相差很大的現象。
摘要………………………………………………………………………………...….i
目錄…………………………………………………………………………………..ii
圖表目錄……………………………………………………………………………iv
第一章 前言
1-1 簡介…………………………………………………………………..1
1-2 颮線發展理論之相關論文回顧……………………………………..2
1-3 颮線型態的判斷……………………………………………………..5
1-4 颮線的觀測資料與階段……………………………………………..7
1-5 伴隨颮線雷雨風暴的中尺度特徵…………………………………..9
1-6 研究目的……………………………………………………………10
第二章 模式計算之數值方法
2-1 坐標設定……………………………………………………………12
2-2 預報方程及診斷方程………………………………………………12
2-3 差分方式……………………………………………………………13
2-4 網格結構……………………………………………………………16
2-5 邊界條件……………………………………………………………16
2-6 雲物理過程…………………………………………………………16
第三章 實驗設計與初始條件
3-1 模擬颮線之環境場…………………………………………………19
3-2 模擬條件及垂直風切………………………………………………19
3-3 以RKW之垂直風切作模擬……………………………………….20
3-4 以FO之垂直風切作模擬………………………………………….22
第四章 模擬結果之分析與敏感度測試
4-1 颮線的雲結構和上下沖流之分析………………………………….23
4-2 溫度場、擾動虛位溫場與氣流線之分析……………………….…25
4-3 降水強度之分析…………………………………………………….26
4-4 敏感度測試………………………………………………………….27
( a ) Without wind-shear………………………………………………..27
( b ) Without cloud physics……………………………………………..28
( c ) With Δx = 2000 m………………………………………………....29
( d ) With 2nd order advection scheme………………………………….30
4-5以FO垂直風切作模擬之結果分析………………………………..31
第五章 結論與未來展望
5-1 研究結論…………………………………………………………….33
5-2 未來研究展望……………………………………………………….35
圖表…………………………………………………………………………....37
誌謝…………………………………………………………………………....80
參考文獻………………………………………………………………………81
Barnes, G. M., and K. Sieckman, 1984 : The environment of fast and slow- moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 1782-1794.
Bluestein, H. B., and M. H. Jain, 1985 : Formation of mesoscale lines of pre- cipitation : severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711-1732.
Browning, K. A., 1964 : Airflow and precipitation trajectories within severe local storms which travel to the right of the mean wind. J. Atmos. Sci., 21, 634-639.
───, and F. H. Ludlam, 1962 : Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117-135.
───, 1965 : Some inferences about the updraft within a severe local storm. J. Atmos. Sci., 22, 669-677.
Brunk, I. W., 1953 : Squall lines. Bull. Amer. Meteor. Soc., 34, 1-9.
Burgess, D. W., and E. B. Curran, 1985 : The relationship of storm type to en- vironment in Oklahoma on 26 April 1984. Preprints 14th Conf. on Severe Local Storms, Amer. Meteor. Soc., Boston, MA 02108, 208-211.
Byers, H. R., and R. R. Braham, 1949 : The thunderstorm. U. S. Gov’t Printing Office, Washington DC, 287pp. [NTIS PB-234-515.]
Carbone, R. E., 1982 : A severe frontal rainband. PartⅠ: stormwide hydrody- namic structure. J. Atmos. Sci., 39, 258-279.
Chern, Jiun-Dar 1994 : Numerical simulations of cyclogenesis over the West- ern United States. Ph. D. dissertation, Purdue University.
Chong, M., P. Amayenc, G. Scialom and J. Testud, 1987 : A tropical squall line observed during the COPT 81 experiment in West Africa. PartⅠ: Kine- matic structure inferred from dual-Doppler radar data. Mon. Wea. Rev., 115, 670-694.
Colby, F. P., Jr., 1983 : Convective inhibition as predictor of the outbreak of convection in AVE-SESAME II. Preprints, 13th Conf. On Severe Local Storms, Tulsa, Amer. Meteor. Soc., 324-327.
Deardorff, J. W., 1980 : Stratocumulus-capped mixed layers derived from a three-dimensional model. Bounary-layer Meteor., 18, 495-527.
Dudhia, J., M. W. Moncrieff and D. K. W. So, 1987 : The two-dimensional dynamics of West African squall lines. Quart. J. Roy. Meteor. Soc., 113, 121-146.
Fankhauser, J. C., 1974 : The derivation of consistent fields of wind and geo- potential height from mesoscale rawinsonde data. J. Appl. Meteor., 13, 637-646.
Fovell, R. G., and Y. Ogura, 1988 : Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 3846-3879.
Frank, W. M., 1978 : The life cycles of GATE convective systems. J. Atmos. Sci., 35, 1256-1264.
Fujita, T., 1955 : Results of detailed synoptic studies of squall lines. Tellus, 7, 405-436.
───, and H. A. Brown, 1958 : A study of mesosystems and their radar echoes. Bull. Amer. Meteor. Soc., 39, 538-554.
───, 1959 : Precipitation and cold air production in mesoscale thunderstorm systems. J. Meteor., 16, 454-466.
───, 1963 : Analytical mesometeorology. A review. Meteor. Monogr., 5, 77-152.
Gamache, J. F., and R. A. Houze, Jr., 1982 : Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118-135.
───, and ───, 1983 : Water budget of a mesoscale convective system in the tropics. J. Atmos. Sci., 40, 1835-1850.
───, and ───, 1985 : Further analysis of the composite wind thermody- namic structure of the 12 September GATE squall line. Mon. Wea. Rev., 113, 1241-1259.
Glossary of Meteorology, R. E. Huschke, Ed., 1959. Amer. Meteor. Soc., Boston, p.534.
Hane, C. E., 1973 : The squall line thunderstorm : numerical experimentation. J. Atmos. Sci., 30, 1672-1690.
Heymsfield, G. M., and S. Schotz, 1985 : Structure and evolution of a severe squall line over Oklahoma. Mon. Wea. Rev., 113, 1563-1589.
Houze, R. A., 1977 : Structure and dynamics of a tropical squall-line sytem. Mon. Wea. Rev., 105, 1540-1567.
───, and S. A. Rutledge, and M. I. Biggerstaff, and B. F. Smull, 1989 : Interpretation of Doppler weather radar display of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608-619.
Hoxit, L. R., C. F., Chappell and J. M. Fritsch, 1976 : Formation of mesolows or pressure troughs in advance of cumulonimbus clouds. Mon. Wea. Rev., 104, 1419-1428.
Hsie, E.-Y., and R. D. Farley and H. D. Orville, 1980 : Numerical simulation of ice-phase convective cloud seeding. J. Appl. Meteor., 19, 950-977.
Hsu, W.-R., and J. H. Tai, 1999: Method of solving moist thermodynamic equa- tions in NTU-Purdue Non-hydrostatic Model and tests on 2D moist moun- tain waves. TAO, 10, 305-320.
───, and W.-Y. Sun, 2001:A time-split, forward-backward numerical model for solving a system of nonhydrostatic and compressible equations. Tellus, 53A, 279-299.
Johnson, R. H., and M. E. Nicholls, 1982 : A composite analysis of the bound- ary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308- 319.
Klemp, J. B., and R. B. Wilhelmson, 1978a : Simulations of right- and left- moving storms produced through storm splitting. J. Atmos. Sci., 35, 1097 -1110.
───, and ───, 1978b : The simulation of three- dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070-1096.
───, R. Rotunno and M. L. Weisman, 1985 : Numerical simulations of squall lines in two and three dimensions. Preprints, 14th Conf. Severe Local Storms, Indianapolis, Amer. Meteor. Soc., 179-182.
LeMone, M. A., 1983 : Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 1815-1834.
───, G. M. Barnes and E. J. Zipser, 1984 : Momentum flux by lines of cumulonimbus over the tropical oceans. J. Atmos. Sci., 41, 1914-1932.
Lilly, D. K., 1979 : The dynamical structure and evolution of thunderstorms and squall lines. Ann. Rev. Earth Planet. Sci., 7. 117-171.
Lin, Y.-L., R. D. Farley and H. D. Orville, 1983 : Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092.
Ludlam, F. H., 1963 : Severe local storms: a review. Meteor. Monogr., 5, Amer. Meteor. Soc. 1-30.
Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and transfer prop- erties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336-352.
───, and M. J. Miller, 1976 : The dynamics and simulation of tropical cu- mulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373-394.
───, 1978 : The dynamical structure of two-dimensional steady convection in constant vertical shear. Quart. J. Roy. Meteor. Soc., 104, 543-567.
Nagata, M., and Y. Ogura, 1991: A modeling case study of interaction between heavy precipitation and a low -level jet over Japan in the Baiu season. Mon. Wea. Rev., 119, 1309-1337.
Newton, C. W., 1950 : Structure and mechanism of the prefrontal squall line. J. Meteor., 7, 210-222.
───, 1963 : Dynamics of severe convective storms. Meteor. Monogr., 5, Amer. Meteor. Soc. 33-58.
───, 1966 : Circulations in large sheared cumulonimbus. Tellus, 18, 699- 713.
───, and J. C. Fankhauser, 1964 : On the movements of convective storms, with emphasis on size discrimination in relation to water-budget require- ments. J. Atmos. Sci., 37, 553-567.
Ogura, Y., and N. A. Phillips, 1962 : Scale analysis of deep and shallow con- vection in the atmosphere. J. Atmos. Sci., 19, 173-179.
───, and M.-T. Liou, 1980 : The structure of a midlatitude squall line: A case study. . J. Atmos. Sci., 37, 553-567.
Rotunno, R., and J. B. Klemp, 1982 : The influence of shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136-151.
───, J. B. Klemp and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463-485.
Roux, F., J. Testud, M. Payen and B. Pinty, 1984 : West African squall-line thermodynamic structure retrieved from dual-Doppler radar observations. J. Atmos. Sci., 41, 3104-3121.
Rutledge, S. A., and P. V. Hobbs, 1983 : The mesoscale and microscale struc- ture and organization of clouds and precipitation in midlatitude cyclones. VIII : a model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185-1206.
───, and ───, 1984 : The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII : a diagnostic modeling study of precipitation development in narrow cold- frontal rainbands. J. Atmos. Sci., 41, 2949-2972.
Sanders, F., and K. A. Emanuel, 1977 : The momentum budget and temporal evolution of a mesoscale convective system. J. Atmos. Sci., 34, 322-330.
Schlesinger, R. E., 1973 : A numerical model of deep moist convection: PartⅠ: Comparative experiment for variable ambient moisture and wind shear. J. Atmos. Sci., 30, 835-856.
Smull, B. F., and R. A. Houze, Jr., 1985 : A midlatitude squall line with a trail- ing region of stratiform rain : radar and satellite observations. Mon. Wea. Rev., 113, 117-133.
───, and ───, 1987a : Dual-doppler analysis of a midlatitude squall line with a trailing region of stratiform rain. J Atmos. Sci., 44, 2128-2148.
───, and ───, 1987b : Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869-2889.
Soong, S.-T., and Y. Ogura, 1980 : Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 2035-2050.
Takeda, T., 1971 : Numerical simulation of a precipitating convective cloud : the formation of a “long-lasting” cloud. J. Atmos. Sci., 28, 350-375.
Thorpe, A. J., M. J. Miller and M.W. Moncrieff , 1982 : Two-dimensional con- vection in non-constant shear: a model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739-762.
Sun, W.-Y., 1980: A forward-backward time integration scheme to treat internal gravity waves. Mon. Wea. Rev., 108, 402—407.
───, and J.-D. Chern, 1993a : Diurnal variation of lee vortices in Taiwan and the surrounding area. J Atmos. Sci., 50, 3404—3430.
───, and J.-D. Chern, 1993b : Numerical experiments of vortices in the wakes of large idealized mountains. J Atmos. Sci., 51, 191—209.
Weisman, M. L., and J. B. Klemp, 1982 : The dependence of numerically sim- ulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520.
───, and ───, 1984 : The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479-2498.
Williams, D. T., 1948 : A surface micro-study of squall line thunderstorms. Mon. Wea. Rev., 2, No.3.
Zipser, E. J., 1969 : The role of organized unsaturated downdrafts in the struc- ture and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799-814.
───, 1977 : Mesoscale and convective-scale downdrafts as distinct compo- nents of squall-line structure. Mon. Wea.Rev., 105, 1568-1589.
林李耀, 1997 : 颮線的數值模擬研究。 國立臺灣大學大氣科學研究所博士論文
謝銘恩, 2001, : 對稱性不穩度的數值研究。 國立臺灣大學大氣科學研究所碩士論文
陳泰然:中尺度氣象學講義
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top