(3.237.178.91) 您好!臺灣時間:2021/03/07 02:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馬博綸
研究生(外文):MA, PO-LUN
論文名稱:氣象模擬於大氣氣膠模擬之應用及其不確定因素探討
論文名稱(外文):Uncertainties of Modeling Atmospheric Aerosols due to Meteorological Simulation
指導教授:吳俊傑吳俊傑引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:150
中文關鍵詞:數值模擬大氣氣膠不確定性資料同化黃沙排放MM5TAQM大氣邊界層
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
由於氣象模擬對模擬空氣品質扮演極為重要之角色,因此,本研究擬透過中尺度氣象模式(PSU/NCAR Mesoscale Model, MM5)與台灣空氣品質模式(Taiwan Air Quality Model, TAQM)瞭解由氣象模擬造成的不確定性對模擬大氣氣膠(aerosol)的影響。本研究透過三個不同面向探討此一問題:(1) 評估透過同化額外氣象觀測資料對模擬結果之影響;(2) 評估應用不同積雲參數化方法對模擬結果之影響;(3) 評估應用不同大氣邊界層參數化及地表副模組對模擬結果之影響。結果顯示,上述氣象模式因子對於大氣氣膠之模擬有一定程度之影響。
本研究主要選取南高屏地區空氣污染事件1996年11月21日至28日進行數值模擬研究。在同化全球觀測資料方面,結果顯示氣象模擬之初始場的確可獲改善,但對48小時後之模擬結果並無太大影響。而同化環保署『加強觀測期一』(Intensed Observing Period-1, IOP-1)所增加之額外探空資料無法改善模擬結果。另外,應用四維資料同化(Four Dimensional Data Assimilation, FDDA)可有效改進模擬結果,例如能校正由側邊界擾動所導致的錯誤模擬結果。在應用不同積雲參數化方法實驗中,結果顯示對模擬綜觀尺度氣象場影響不大,但對模擬大氣氣膠傳送與分佈上則有時間上近12小時之落差。在應用不同大氣邊界層參數及不同地表副模組方面,結果顯示大氣氣膠的分佈會因為不同參數對局部尺度氣象場及大氣邊界層特性之掌握不同而有所差異:此外,在應用黃沙排放推估模組分析不同大氣邊界層參數及不同地表副模組對大氣氣膠自然排放量推估之差異上,結果顯示,不同參數設定可造成大氣氣膠排放量推估最高達五倍之差距。
本研究透過提高氣象資料品質及應用最佳物理參數設定,以期降低由氣象模擬所導致在模擬大氣氣膠時之不確定性。另外,本研究建議應透過敏感度測試研究以獲得包含更多大氣資訊的額外觀測資料以改善模擬結果;而由MM5中不同物理參數與TAQM中化學反應過程在交互作用下所導致之不確定因素仍有待後續深入研究。

This thesis dedicated to study the imfluence of meteorological simulation with regard to modeling atmospheric aerosols. Series of numerical experiments made by PSU/NCAR Fifth Generation Mesoscale Model (“MM5”) and Taiwan Air Quality Model (“TAQM”) have been carried out with three major scientific goals: (1) to study the impact of assimilating additional meteorological observational data; (2) to study the discrepancy of applying different cumulus parameterizations; (3) to study the discrepancy of applying different PBL and surface schemes. The results demonstrated that the uncertainty of modeling air quality fraught with meteorological simulation is significant.
Numerical simulations during the selected air pollution episode (Nov. 21~28, 1996) present that assimilating additional meteorological observational data can reinforce the data quality of the initial condition of the model, but does not necessarily improve the simulation. In addition, assimilating the additional soundings obtained from IOP-1 (Intense Observing Period-1, Dec. 10~15, 1998) leads to similar conclusion. FDDA (Four Dimensional Data Assimilation), however, could modify the false simulation caused by lateral boundary perturbation. The PV diagnostics has been applied to quantitatively evaluate its impact upon regional circulation around Taiwan. With respect to the sensitivity test of MM5 physical schemes, the results showed that the meteorological field is not sensitive to the choice of cumulus parameterization in this case; the only notable difference is a 12-hour time lag among simulations transporting aerosols from mailand China to Taiwan while cumulus parameterizations varied. Adopting PBL (Planetary Boundary Layer) and surface schemes created diverse local meteorological fields and PBL characteristics and thereby affected aerosol’s behavior. Additionally, different PBL and surface scheme can cause a five-time difference of yellow sand emission rate calculated by the Yellow Sand Assessment Module.
Since the uncertainty of modeling atmospheric aerosols due to meteorological simulation has been ackenowledged, this study suggests that (1) optimizing physical schemes; and (2) identifying the most sensitive area to obtain informative data for modeling are two necessary for improving air quality modeling. Notably, the effect of any nonlinear interactions between physical schemes in MM5 and chemical transformations in TAQM remains unknown that requires further study.

目錄
自序 1
摘要 3
Abstract (英文摘要) 5
圖表說明 8
1. 研究背景 16
2. 研究方法 18
2.1 空污個案概述 18
2.2 數值模式簡介 20
2.2.1 MM5 20
2.2.2 FDDA 26
2.2.3 TAQM 28
2.2.4 沙塵揚起推估模組 37
2.3 實驗設計 38
3. 結果分析 40
3.1 模式表現 40
3.2 資料同化實驗 43
3.3 積雲參數化影響評估 45
3.4 大氣邊界層參數及地表模組影響評估 47
4. 討論與總結 50
參考文獻 54

林沛練,1994:臭氧層問題因應對策之研擬(III)台灣地區局部環流之數值模擬。行政院環保署期末報告(EPA-83-F106-09-12)。62頁。
林沛練,郭英華,陳碩,1995:應用模式與許可制度之建立與策略:台灣空氣品質氣象模式之建立與應用(Ⅰ)。台灣省環境保護處83年度研究計畫報告。190頁。
林沛練,黃清勇,1996:酸雨對環境及人體健康影響之研究整合計畫,子計畫二:酸沈降與氣象條件關係之研究。行政院環保署期末報告(EPA-85-14-4-09-11)。122頁。
林沛練,黃清勇,盛揚帆,1996:酸雨對台灣地區自然環境及人體健康影響之危害與管制規畫,子計畫五:酸沈降與氣象條件關係之研究(Ⅱ)。行政院環保署期中報告(EPA-86-FA44-09-47)。169頁。
張艮輝,1996:酸沈降前驅物質控制策略研究─台灣空氣品質模式之應用。行政院環保署期末報告(EPA-85-F104-09-03)。207頁。
張艮輝,2000:南高屏地區空氣污染總量管制規劃--空氣品質模式組子計畫B4:光化網格模式對臭氧管制對策方案之模擬分析與綜合評估。行政院環保署期末報告(EPA-89-FA11-03-101)。202頁。
吳俊傑,林沛練,2000:南高屏地區空氣污染總量管制規劃--空氣品質模式組子計畫B3:氣象模式之模擬應用及觀測數據驗證,行政院環保署期末報告(EPA-89-FA11-03-101),168頁。
陳泰然,林博雄,1999:南高屏地區空氣污染總量管制規劃─子計畫C1:南高屏氣象觀測實驗計劃,行政院環保署期末報告(EPA-88-FA21-03-0012),92頁。
Anthes, R. A., and T. T. Warner, 1978: Development of hydro-dynamical models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev., 106, 1045-1078.
______,1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270-286. Anthes, R. A., E.-Y. Hsie and Y.-H. Kuo, 1987:Description of the Penn State/NCAR Mesoscale Model Version 4(MM4). NCAR Tech. Note, NCAR/TN-282 +STR, 66pp.(Available from NCAR, P.O. Box 3000, Boulder CO 80307)
Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale enviornment. Part I. J. Atmos. Sci., 31, 674-701.
Ballard, S. P., B. W. Golding, and R. N. Smith, 1991: Mesoscale model experimental forcasts of the Haar of northeast Scotland. Mon. Wea. Rev. 119, 2107-2123
Betts, A., and M. J. Miller, 1986: A new convective adjustment scheme. Part Ⅱ: Asai, T., 1965: A numerical study of the air-mass transformation over the Japan Sea in winter. J. Meteor. Soc. Japan, 43, 1-15.
Binkowski, F.S., Shankar, U., 1995: The regional particulate matter model —1. Model description and principle results. J. Geo. Rev., 100, No. D12, 26191~26209
Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Enviornmental Science and Engineering, Vol.1, No. 1, J. Pfafflin and E. Ziegler, Eds., Gordon and Breach , 50-85.
Carmichael, G.R., L.K. Peters, and T. Kitada, 1986, A Second Generation Model for Regional-Scale Transport/Chemistry/Deposition, Atmos. Environ., 20,173-188.
Chang, J.S., R.A. Brost, I.S.A. Isaksen, S. Modronich, P. Middleton, W.R. Stockwell, and C.J. Walcek, 1987, A three-dimensional Eulerian acid deposition model: physical concepts and formulation, J. Geophys. Res., 92,14681-14700.
Chatfield R. B. and Crutzen P. J., 1984: Sulfur dioxide in remote oceanic air: cloud transport if reactive precursors. J. Geo. Res. 89, 7111-7132
Chen, F. and J. Dudhia, 2001: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585.
Chen, F. and J. Dudhia, 2001: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587-604.
Chow J. C. et al., 1994: A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions. Atmospheric Environment 28, 3463-3481.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci.,46, 3077-3107.
______, 1993: A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493-1513.
______, 1996: A multi-layer soil temperature model for MM5. Preprints, The Sixth PSU/NCAR Mesoscale Model Users; Workshop, 22-24 July 1996, Boulder, Colorado, 49-50
Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 1722-1733.
Gidel L. T., 1983: Cumulus cloud transport of transient tracers. J. Geo. Res. 88, 6587-6599.
Grell, G. A.,1993: Prognostic evaulation of assumptions used by cumulus parameterization. Mon. Wea. Rev.,121,764-787.
Guo, Y.-R., Y.-H. Kuo, J. Dudhia, and D. Parsons, 2000: Four-dimensional data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon. Wea. Rev., 128, 619-643.
Kain J. S. and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 246 pp.
Pickering K. E., Thompson A. M., Tao W.-K. and Kucsera T. L., 1993: Upper tropospheric ozone production following mesoscale convection during STEP/EMEX. J. Geo. Res. 98, 8783-8749.
Song-You Hong and Hua-Lu Pan, 1996: Nonlocal Voundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Mon. Wea. Rev., 124, 2322~2339.
Stockwell, W.R.,P. Middleton , and J.S Chang, 1990, The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling, J. Geophy. Res., 95, D10,16343-16347.
Venkatram, A., P.K. Karamchandani, and P.K. Misra, 1988, Testing a Comprehensive Acid Deposition Model, Atmos. Environ., 22,737-747.
Walcek, C.J., and G.R. Taylor, 1986, A Theoretical Method for Computing Vertical Distributions of Acidity and Sulfate Production within Growing Cumulus Clouds, J. Atmos. Sci., 43,339-355.
Wang, Z., H. Ueda and M. Huang, 2000: A deflation module for use in modeling long-range transport of yellow sand over East Asia. J. Geo. Rev., 105, D22, 26947~26960
Wesely, M.L., and B.B. Hicks, 1977, Some Factors That Affect the Deposition Rates of Sulfur Dioxide and Similar Gases on Vegetaton, JAPCA, 27,1110-1116.
Whitby, Kenneth T.; “The physical characteristics of sulfur aerosols”; Atmos. Environ., 12, pp.134-159
Whitby, E. R., P.H. McMurry, U. Shankar, and F.S. Binkowski; “Modal aerosol dynamics modeling, Rep. 600/3-91/020, Atmos. Res. And Exposure Assess. Lab., U.S. Environ. Prot. Agency, Research Triangle Park, N. C., 1991.
Wu, C.-C., Huang, T.-S., and Huang, K.-N., 2001: PV Diagnostics of the Impact of model Initialization on the Performance of a Typhoon Prediction System. (Submitted to Mon. Wea. Rev.)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔