(3.231.29.122) 您好!臺灣時間:2021/02/26 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:董建岳
研究生(外文):ChienYueh Tung
論文名稱:中孔奈米晶型二氧化錫之製備
論文名稱(外文):Synthesis of Mesoporous Nanocrystalline Tin Oxide
指導教授:吳乃立
指導教授(外文):NaeLin Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:100
中文關鍵詞:中孔奈米晶型二氧化錫製備液晶模版奈米結構模版無機前驅物
外文關鍵詞:mesoporousnanocrystallinetin Oxidesynthesisliquid crystal templatesupramolecular tmplateinorganic precursor
相關次數:
  • 被引用被引用:5
  • 點閱點閱:290
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:1
為製備更高比表面積,孔洞分佈更集中之過渡金屬氧化物,本研究發展出一全新之製程,來製備規則性奈米中孔洞二氧化錫。此一製程搭配了液晶模版機制的使用,以及溶膠-凝膠法,和HMDS表面鈍化處理技術。結合二氧化錫溶膠和溴化十六烷基三甲基銨(CTAB)界面活性劑所製備出來的二氧化錫粉體,在300℃的鍛燒溫度下,擁有比表面積303 m2/g,平均孔徑大小為2.9 nm,若再加上HMDS表面鈍化處理技術,則將比表面積上推至352 m2/g,並保有六方最密堆積之規則排列中孔洞,平均孔徑大小為2.4 nm,孔洞分佈亦非常集中,孔徑大小在1.7~300 nm之間的第一幾何平均標準差為2.8。因預作HMDS表面鈍化處理,可有效限制二氧化錫結晶成長,避免因高溫而使二氧化錫結構重新排列,造成孔洞微結構之瓦解,而保有一定之機械強度與熱穩定性,所以再將鍛燒溫度提高至500℃,仍可獲得高比表面積220 m2/g。本研究並對此材料在加熱過程中,微結構與化學成分的變化作完整的分析與探討。綜合上述結果,以SnCl4·5H2O作為起始物,採用此一製程,將可製備出孔洞大小集中、分佈單一之規則性奈米中孔洞二氧化錫,使二氧化錫能作更廣泛的應用。
Fully crystallized tin oxide of high surface area and nanopore-size uniformity was obtained by adopting a novel process which including Liquid-Crystal-Template, Sol-Gel method and HMDS used. Tin oxide hydrous sol was first synthesized and peptized via the conventional sol-gel process and then mixed with cetyltrimethylammonium bromide (CTAB). After heating at 300oC to completely burn off the organics, the resulted crystalline tin oxide powder exhibited a surface area of 303 m2/g and an average pore size of 2.9 nm. When adding HMDS in the synthetic process, crystalline tin oxide powder owns a surface area of 352 m2/g and a hexagonal mesoporous structure with 2.4 nm and 1st geometric standard deviation of 2.8 at 300 oC calcinated. In order to maintain the nanoporous structure of tin oxide after high temperature calcinations, the hydroxyl group on the surface of hydrous tin oxide gel is replaced by methyl siloxyl group from Hexamethyldisilazane (HMDS) to inhibit crystal growth effectively before calcinations. As a result of calcination at 500 oC, the powder retained a surface area of 220 m2/g. In our research, we also analyzed and discussed the fine structure and chemical composition changing of tin oxide in calcination processes.
壹、緒論 ............................1
貳、理論與文獻回顧 ...................3
2-1界面活性劑之簡介..................3
2-2液晶模版機制......................6
2-3 二氧化錫之簡介 ..................15
2-4 溶膠-凝膠法.....................18
2-5 抑制高溫鍛燒結晶之生成..........21
2-6研究目的.........................24
參、實驗方法........................25
3-1實驗藥品.........................25
3-2 樣品之製備......................26
3-3 特性分析........................31
肆、結果與討論......................34
4-1界面活性劑之移除.................34
4-2熱處理對中孔二氧化錫粉體之影響...39
4-3 製程環境參數之研究..............63
伍、結論與建議......................76
陸、參考文獻........................78
附錄 A..............................88
[1] Michael Grätzel, “Ultrafast Colour Displays”, Nature, 409, 575 (2001).
[2] M. J. Fuller, M. E. Warwick, “The Catalytic Oxidation of Carbon Monoxide on Tin(Ⅳ) Oxide”, J. Catal., 29, 441 (1973).
[3] F. Sala, F. Trifiro, “Oxidation Catalyst based on Tin-Antimony Oxides”, J. Catal., 34, 68 (1974).
[4] M. Itoh, H. Hattori, K. Tanabe, “Catalytic Sites on SnO2 and TiO2-SnO2 for the Isomerzation of 1-Butene”, J. Catal., 43, 192 (1976).
[5] K. Takahata, “in Chemical Sensor Technology”, edited by T. Seiyama, vol. 1, 39, Tokyo: Kodansha (1988).
[6] A. Camanzi, G. Sberveglierri, U. S. patent 5, 185, 130 (1993).
[7]S. S. Park, J. D. Mackenzie, “Thickness and Microstructure Effects on Alcohol Sensing of Tin Oxide Thin Films”, Thin Solid Films, 274, 154 (1996).
[8] K. Langer, E. Mutschler, G. Lambrecht, D. Mayer, G. Troschau, F. Stieneker, J. kreuter, “Methylmethacrylate Sulfopropylmethacrylate Copolymer Nanoparticles for Drug Delivery PartⅢ: Evaluation as Drug Delivery System for Ophthalmic Application”, International Journal of Pharmaceutics, 158, 219 (1997).
[9] C. T. Kresge, M. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism”, Nature, 359, 22 (1992).
[10] D. Attwood, A.T. Florence, “Surfactant Systems: their Chemistry, Pharmacy and Biology”, New York: Chapman and Hall, (1983).
[11] L. Sepúlveda, J. Cortés, “Ionzation Degrees and Critical Micelle Concentrations of Hexadecyltrimethylammonium and Tetradecyltrimethylammonium Micelles with Different Counterions”, American Chemical Society, 89, 5322 (1985).
[12] F. R. Husson, V. Luzzati, “The Structure of the Micellar Solutions of Some Amphiphilic Compounds in Pure Water as Determined by Absolute Small-Angle X-ray Scattering Techniques”, The Journal of Physical Chemistry, 68, 3504 (1964).
[13] V. Luzzati, H. Mustacchi, A. Skoulios, “Structure of the Liquid-Crystal Phases of the Soap-Water System: Middle Soap and Neat Soap”, Nature, 180, 600 (1957).
[14] R. R. Balmbra, J. S. Clunie, J. F. Goodman, “Cubic Mesomorphic Phases”, Nature, 222, 1159 (1969).
[15] J. Y. Ying, C. P. Mehnert, and M. S. Wong, “Synthesis and Application of Supramolecular-Templated Mesoporous Materials”, Angew. Chem., 38, 56 (1999).
[16] Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R.Leon, P. M. Petroff, F. Schüth, G. D. Stucky, “Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials”, Nature, 368, 317 (1994).
[17] Q. Huo. D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, “Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays “, Chem. Mater., 6, 1176 (1994).
[18] A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. I. Margolese, R. S. Maxwell, G. D. Stucky, M. N. Krish, P. M. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, “Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures”, Science, 261, 1299 (1993).
[19] G. D. Stucky, A. Monnier , F. Schüth, Q. Huo, D. Kumar, D. I. Margolese, M. N. Krish, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, “Molecular Crystals and Liquid Crystals Science and Technology Section A-Molecular Crystals and Liquid Crystals”, Mol. Cryst. Liq. Cryst., 240, 187 (1994).
[20] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowiscz, C. T. Kresge, K. T. Schmitt, C. T. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B.Higgins, J. L. schlenker, J. Am. Chem. Soc., 114, 10834 (1992).
[21] C. Y. Chen, H. X. Li, M. E. Davis, “Studies on Mesoporous Materials Ⅰ. Synthesis and Characterization of MCM-41” Microporous Mater., 2, 17 (1993).
[22] C. Chen, S. L. Burkett, H. Li, M. E. Davis, “Studies on Mesoporous Materials Ⅱ. Synthesis Mechanism of MCM-41” Microporous Mater., 2, 27 (1993).
[23] Q. Huo, R. Leon, P. M. Petroff, G. D. Stucky, “Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array”, Science, 268, 1324 (1995).
[24] Q. Huo, D. I. Margolese, G. D. Stucky, “Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials”, Chem. Mater., 8, 1147 (1996).
[25] F. Chen, M. Liu, “Preparation of mesoporous Tin Oxide for Electrochemical Applications”, Chem. Commun., 1829 (1999).
[26] L. Qi, J. Ma, H.Cheng, Z.Zhao, “Synthesis and Characterization of Mesostructured Tin Oxide with Crystalline Walls”, Langmuir, 14, 2579 (1998).
[27] D. M. Antonelli, J. Y. Ying,” Synthesis and Characterization of Hexagonally Packed Mesoporous Tantalum Oxide Molecular Sieves”, Chem. Mater., 8, 874 (1996).
[28] W. Zhang, T. R. Pauly, T. J. Pinnavaia, “Tailoring the Framework and Textural Mesopores of HMS Molecular Sieves through an Electrically Neutral (SoIo) Assembly Pathway”, Chem. Mater., 9, 2491 (1997).
[29] D. M. Antonelli, J. Y. Ying,” Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol-Gel Method”, Angew. Chem. Int. Ed. Engl., 34, 18, 2014 (1995).
[30] D. M. Antonelli, J. Y. Ying,”Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieves Through a Novel Ligand-Assisted Templating Mechanism”, Angew. Chem. Int. Ed. Engl., 35, 4, 426 (1996).
[31] D. M., Antonelli, A. Nakahira, J. Y. Ying, “Ligand-Assisted Liquid Crystal Templating in Mesoporous Niobium Oxide Molecular Sieves”, Inorg. Chem., 35, 3126 (1996).
[32] D. M., Antonelli, A. Nakahira, J. Y. Ying, “Ligand-Assisted Liquid Crystal Templating in Mesoporous Niobium Oxide Molecular Sieves”, Inorg. Chem., 35, 3126 (1996).
[33] W.Hammond, E. Prouzet, S. D. Mahanti, T. J. Pinnavaia, “Structure Factor for the periodic walls of Mesoporous MCM-41 Molecular Sieves”, Microporous and Mesoporous Materials, 27, 19 (1999).
[34] R. W. G. Wyckoff, “Crystal Structures”, Interscience, New York (1951).
[35] C. M. A. Brett and A. M. O. Brett, “Electrochemistry, Principles, Methods, and Applications”, p. 60, Oxford University Press, New York (1996).
[36] M. Székely, C. Mathieu, N. E. Moulayat, M. Herlem, H. Cachet, M. Keddam, H. Perrot, B. Fahys, B. Eid, and E. Caillot, “Behaviour of Fluorine-Doped Tin Oxide Electrode: A Study by Quartz Crystal Microbalance in Propylene Carbonate”, J. Electroanal. Chem., 401, 89 (1996).
[37] H. Yang, S. Han, L. Wang, I.-J. Kim, and Y.-M. Son, “Preparation and Characterization of Indium-Doped Tin Dioxide Nanocrystalline Powders”, Mater. Chem. Phys., 56, 153 (1998).
[38] V. Casey and M. I. Stephenson, “A Study of Undoped and Molybdenum Doped, Polycrystalline, Tin Oxide Thin Films Produced by a Simple Reactive Evaporation Technique”, J. Phys. D: Appl. Phys., 23, 1212 (1990).
[39] T. Ono, T. Yamanaka, Y. Kubokawa, and M. Komiyama, “Structure and Catalytic Activity of Sb Oxide Highly Dispersed on SnO2 for Propene Oxidation”, J. Catal., 109 , 423 (1988).
[40] C.J.R. Gonzalez-Oliver and I. Kato, “Sn(Sb)-Oxide Sol-Gel Coatings on Glass”, J. Non-Cryst. Solids, 82, 400 (1986).
[41] N. L. Wu, L. F. Wu, Y. C. Yang, S. J. Hung, “Spontaneous Solution-Sol-Gel Process for Preparing Tin Oxide Monolith”, J. Mater. Res., 11, 813 (1996).
[42] Y. Kobayashi, M. Okamoto, and A. Tomita, “Preparation of Tin Oxide Monolith by the Sol-Gel Method from Inorganic Salt”, J. Mater. Sci., 31, 6125 (1996).
[43] Q. Li, X. Yuan, G. Zeng, S. Xi, “Study on the Microstructure and Properties of Nanosized Stannic Oxide Powders”, Mater. Chem. Phys., 47, 239 (1997).
[44] A. Maddalena, R. Dal Maschio, S. Diré, and A. Raccanelli, “Electrical Conductivity of Tin Oxide Films Prepared by the Sol-Gel Method”, J. Non-Cryst. Solids, 121, 365 (1990).
[45] D. Elliott, D. L. Zellmer, and H. A. Laitinen, “Electrochemical Properties of Polycrystalline Tin Oxide”, J. Electrochem. Soc., 117, 1343 (1970).
[46] N. R. Armstrong, A. W. C. Lin, M. Fujihira, and T. Kuwana, “Electrochemical and Surface Characteristics of Tin Oxide and Indium Oxide Electrodes”, Anal. Chem., 48, 741 (1976).
[47] B. Orel, U. Lavrenčič-Štangar, and K. Kalcher, “Electrochemical and Structural Properties of SnO2 and Sb:SnO2 Transparent Electrodes with Mixed Electronically Conductive and Ion-Storage Characteristics”, J. Electrochem. Soc., 141, L127 (1994).
[48] J. C. Giuntini, W. Granier, J. V. Zanchetta, and A. Taha, “Sol-Gel Preparation and Transport Properties of a Tin Oxide”, J. Mater. Sci. Lett., 9, 1383 (1990).
[49] J. F. Goodman and S. J. Gregg, “The Production of Active Solids by Thermal Decomposition. Part XI. The Heat Treatment of Precipitated Stannic Oxide”, J. Chem. Soc., 1162 (1960).
[50] R. S. Hiratsuka, S. H. Pulcinelli, and C. V. Santilli, “Formation of SnO2 Gels from Dispersed Sols in Aqueous Colloidal Solutions”, J. Non-Cryst. Solids, 121, 76 (1990).
[51] R. S. Hiratsuka, C. V. Santilli, D. V. Silva, and S. H. Pulcinelli, “Effect of Electrolyte on the Gelation and Aggregation of SnO2 Colloidal Suspensions”, J. Non-Cryst. Solids, 147锄, 67 (1992).
[52] S. M. Kudryavtseva, A. A. Vertegel, S. V. Kalinin, N. N. Oleynikov, L. I. Ryabova, L. L. Meshkov, S. N. Nesterenko, M. N. Rumyantseva, and A. M. Gaskov, “Effect of Microstructure on the Stability of Nanocrystalline Tin Dioxide Ceramics”, J. Mater. Chem., 7, 2269 (1997).
[53] G. Zhang and M. Liu, “Preparation of Nanostructured Tin Oxide Using a Sol-Gel Process Based on Tin Tetrachloride and Ethylene Glycol”, J. Mater. Sci., 34, 3213 (1999).
[54] K. Y. Kim and S. B. Park, “Preparation of Nanosize SnO2 Particles in an Aerosol Reactor by Pyrolysis of Tetra-n-Butyl Tin”, J. Mater. Sci., 34, 5783 (1999).
[55] K. C. Song and J. H. Kim, “Preparation of Nanosize Tin Oxide Particles from Water-in-Oil Microemulsions”, J. Colloid Interface Sci., 212, 193 (1999).
[56] 吳同峰, “奈米氧化鋯粉體之製作與分析”, 國立台灣大學化學工程學研究所碩士論文 (2000).
[57] N. L. Wu, S. Y. Wang, I. A. Rusakova, “ Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides”, Science, 285, 1375 (1999).
[58] 王世源, “二氧化錫膠體製程之研究”, 國立台灣大學化學工程學研究所博士論文 (1999).
[59] C. J. Brinker, G. W. Scherer,” Sol-Gel Science: The physics and Chemistry of Sol-Gel Processing”, Academic Press, Inc., (1990)
[60] S. Lowell, J. E. Shields, “Powder Surface Area and Porosity”, edited by B. Scarlett, 3rd (1991).
[61] A. Sayari, P. Liu, “Review Non-Silica Periodic Mesostructured Materials: Resent Progress”, Microporous Materials, 12, 149 (1997).
[62] J. N. Israelachvili, in Surfactants in Solution, edited by K. L. Mittal, P. Bothorel, vol. 4, p. 3, Plenum, New York (1987).
[63] Y. D. Wang, C. L. Ma, X. D. Sun, H. D. Li, “Synthesis of Supramolecular-Templated Mesostructured Tin Oxide”, Inorganic Chemistry Communications, 4, 223 (2001).
[64] E. Prouzet, T. J. Pinnavaia, “Assembly of Mesoporous Molecular Sieves Containing Wormhole Motifs by a Nonionic Surfactant Pathway: Control of Pore Size by Synthesis Temperature”, Angew. Chem. Int. Ed. Engl., 36, No. 5, 516 (1997).
[65] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, “Triblock Copolymer Synthesis of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores”, Science, 279, 548 (1998).
[66] J. S. Beck, J. C. Vartuli, G. J. Kennedy, C. T. Kresge, W. J. Roth, S. E. Schramm, “Molecular or Supramolecular Templating: Defining the Role of Surfactant Chemistry in the Formation of Microporous and Mesoporous Molecular Sieves”, Chem. Mater., 6, 1816 (1994).
[67] Balmbra, “Surfactant Science Series: Cationic Surfactants-Physical Chemistry”, edited by D. N. Rubingh, P. M. Holland, vol. 37, Marcel Dekker, Inc., (1991).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔