(3.238.7.202) 您好!臺灣時間:2021/03/04 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:池明輝
研究生(外文):Chih, Ming-Hui
論文名稱:球形膠體粒子垂直於平板之電泳行為
論文名稱(外文):Electrophoretic Motion of a Spherical Colloids Normal to a Plane
指導教授:李克強李克強引用關係
指導教授(外文):Lee, Eric
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:167
中文關鍵詞:電泳速度解離反應表面電位極化效應電雙層
外文關鍵詞:mobilitycharged-regulationsurface potentialpolarization effectdouble layer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:155
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本文所討論的為探討當一膠體粒子垂直於不帶電平板之電泳行為,同時考慮當粒子表面為一固定電位或是一解離反應。在此我們去除相當多的限制如表面電位的大小,極化效應的考慮及任意的電雙層厚度(a)-1, 和a分別是Debye length的倒數及粒子的半徑。
在文中我們了解當電雙層厚度較薄或是粒子距平板較遠的時候則其電泳速度較快。而當粒子表面上的解離基Ns數量較小,則其電泳速度的絕對值隨著a值上升而下降。反之若解離基數量較大則有著相反的結果。有趣的是當解離基數量在一定的數目的時候,則電泳速度的絕對值有一最大值的出現。我們也了解了在電解質溶液中若pH值越大則其電泳速度的絕對值越小。同時我們也可以看到若不考慮極化效應的情形下,則不同的表面電位其電泳速度並無太大的不同。相反的若我們考慮極化效應時則可以看倒電泳速度有著相當程度的變化。但在粒子越接近平板的時候,此時的流力為最主要的貢獻。故其它的效應就不太明顯,但若太接近平板的時候,則因電雙層的變形而使得電泳速度異號。
The electrophoresis of a spherical particle with charge-regulated surface or fixed potential surface normal to a planar surface is analyzed theoretically. The present study extends previous analyses to high surface potential , an arbitrary double layer thickness (a)-1,  and a being respectively the reciprocal Debye length and particle radius and taking the effect of double layer polarization into account.
We conclude that the thinner the double layer and/or the larger the particle-surface distance, the greater the mobility of the particle. If the concentration of the dissociable functional groups on particle surface Ns is low, the absolute mobility of a particle decreases with the increase in a, and the reverse is true if Ns is high. It is interesting to find that for a medium Ns, the absolute mobility has a local maximum as a varies. We show that the higher the pH of the liquid phase, the smaller the absolute mobility of a particle. We also show that if double layer polarization is neglected, the effect of the surface potential of a particle on its electrophoretic velocity is inappreciable. On the contrary, it becomes significant if double layer polarization is present. However, if the distance between the particle and the surface is sufficiently close, since the hydrodynamic effect dominates, the influence of the surface potential and double layer polarization become insignificant.
目錄
摘要……………………………………………………………………….i
ABSTRACT………………………………………………………………ii
目錄………………………………………………………………………iv
表目錄……………………………………………………………………vi
圖目錄……………………………………………………………………vii
第一章 緒論………………………………………………………1
第二章 理論分析……………………………………………………….10
2.1 系統描述……………………………………………………….10
2.2 主控方程式…………………………………………………….12
2.3 平衡系統……………………………………………………….15
2.4 低表面電位…………………………………………………….17
2.5 高表面電位…………………………………………………….31
第三章 數值方法……………………………………………………….42
3-1 正交配位法…………………………………………………….42
3-2 空間映射……………………………………………………….50
3-3 牛頓-拉福生疊代法……………………………………………51
3-4 數值積分……………………………………………………….55
3-5 數值畸點之處理…………………………………………… 57
第四章 結果與討論………………………………………………… 62
4-1 主控方程式計算之結果…………………………………… 68
4-2 固定低表面電位……………………………………………..92
4-3 不固定低表面電位………………………………………….103
4-4 固定高表面電位…………………………………………….117
4-5 不固定高表面電位………………………………………….130
第五章 結論………………………………………………………….134
參考文獻……………………………………………………………... 136
符號表…………………………………………………………….... .141
附錄A……………………………………………………………….. .145
附錄B……………………………………………………………….. .151
附錄C………………………………………………………………... 164
1. Hunter, R.J., “Foundations of Colloid Science.”, Vols. I and II,Clarendon Press, Oxford, 1989.
2. Masliyah, J. H., “Electrokinetic Transport Phenomena” , Edmonton, Alta. : Alberta Oil Sands Technology and Research Authority, c1994.
3. Hunter, R. J., “Zeta Potential in Colloid Science : principles and applications”, London ; New York : Academic Press, 1981.
4. Van de Ven, Theo G. M., “Colloidal Hydrodynamics”, London ; San Diego : Academic Press, c1989.
5. Dukhin, S.S., and Derjaguin, B.V., “Surface and Colloid Science.”Vol.7, Wiley, New York, 1974.
6. Russel, W. B., “The Dynamic of Colloidal Systems.”, Madison, Wis. : University of Wisconsin Press, (1987).
7. Von Smoluchowski, M., Z. Phys. Chem., 92, 129 (1918).
8. Huckel, E., Phys. Z. 25, 204 (1924).
9. Henry, D.C., Proc. R. Soc. London Ser. A 133, 106 (1931).
10. Overbeek, J. Th. G., Adv. Colloid Sci. 3, 97 (1950).
11. Booth, F., Proc. R. Soc. London Ser. A 203 514 (1950).
12. Wiersema, P.H., Loeb, A.L., and Overbeek, J.Th.G., J. Coll. interface Sci., 22, 78 (1966)
13. O’Brien, R.W., and White, L.R., J. Chem. Soc. Faraday II., 74, 1607(1978).
14. O’Brien, R.W., and Hunter, R.J., Can. J. Chem. 59, 1878 (1981).
15. Ohshima, H., Healy, T.W., and White, L.R., J. Chem. Soc. Faraday Trans. 2 79, 1613 (1983).
16. Ohshima, H., Adv. Colloid Interface Sci. 62, 189 (1995).
17. Levine, S., and Neale, G.H., J. Colloid Interface Sci., 47, 520 (1974).
18. Kuwabara, S., J. Phys. Soc. Jpn. 14, 527 (1959).
19. Kozak, M.W., and Davis, E.J., J. Colloid Interface Sci., 127, 497 (1989).
20. Kozak, M.W., and Davis, E.J., J. Colloid Interface Sci., 129, 166 (1989).
21. Ohshima, H., J. Colloid Interface Sci., 188, 481 (1997).
22. Lee E., Chu, J.W., and Hsu, J.P., J. Colloid Interface Sci. 209, 240 (1999).
23. Jorgenson, J.W., Anal. Chem., 58, 743A (1986).
24. Keh, H.J., and Anderson, J.L., J. Fluid Mech., 153, 417 (1985).
25. Keh, H.J., and Chiou, J.Y., Am. Inst. Chem. Eng. J., 42, 1397 (1996).
26. Zydney, A.L., J. Colloid Interface Sci., 169, 476 (1995).
27. Lee E., Chu, J.W., and Hsu, J.P., J. Colloid Interface Sci. 196, 316 (1997)
28. Lee E., Chu, J.W., and Hsu, J.P., J. Colloid Interface Sci. 205, 65 (1998)
29. Morrison, F.A. and Stukel, J.J., J. Colloid Interface Sci. 33, 88 (1969).
30. Keh, H.J. and Lien, L.C., J. Chin. Inst. Chem. Engrs. 20, 283 (1989).
31. Keh, H.J. and Anderson, J.L., J. Fluid Mech. 153, 417 (1985).
32. Ennis, J. and Anderson, J.L., J. Colloid Interface Sci. 185, 497 (1997).
33. Feng, J.J. and Wu, W.Y., J. Fluid Mech. 264, 41 (1994).
34. Shugai, A.A. and Carnie, S.L., J. Colloid Interface Sci. 213, 298 (1997).
35. Teubner, M., J. Chem. Phys. 76, 11 (1982).
36. Krozel, J.W. and Saville, D.A., J. Colloid Interface Sci. 150, 365 (1992).
37. Ninham, B. W. and Parsegian, V. A., J. Theor. Biol. 31, 405 (1971).
38. Lee, E., Yen, F.Y., and Hsu, J.P., Electrophorsis, 21, 475 (2000).
39. Lee, E., Yen, F.Y., and Hsu, J.P., J. Chem. Phys., 112, 6404 (2000).
40. Carnie, S. L. and Chan, D. Y. C., J. Colloid Interface Sci. 155, 297(1993).
41. Carnie, S. L., Chan, D. Y. C. and Gunning ,J. S., Langmuir 10, 2993(1993).
42. Carnie, S. L., Chan, D. Y. C. and Gunning ,J. S., Sci. J. Colloid Interface Sci. 165,116 (1994).
43. Carnie, S. L. and Chan, D. Y. C., J. Colloid Interface Sci. 161, 260(1993).
44. Prieve, D. C.and Ruckenstein, E., J. Theor. Biol. 56, 205 (1976).
45. Krozel, J. W., J. Colloid Interface Sci. 163, 437 (1994).
46. Happel, J. and Brenner, H. “Low-Reynolds Number
Hydrodynamics.” Martinus Nijhoff. (1983).
47. Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T.A., “Spectral Methods in Fluid Dynamics.”, Berlin : Springer-Verlag, c1988
48. Finlayson, B. A., “Nonlinear Analysis in Chemical Engineering” , London ; New York : McGraw-Hill International Book Co., c1980
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔