(3.238.7.202) 您好!臺灣時間:2021/03/03 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃玉仙
研究生(外文):Yu-Hsien Huang
論文名稱:含普魯士藍與六氰鐵化銦電致色變元件之性能與最適化研究
論文名稱(外文):An Electrochromic Device Containing Prussian Blue and Indium Hexacyanoferrate:Its Performance and Optimization
指導教授:何國川
指導教授(外文):Kuo-Chuan Ho
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:162
中文關鍵詞:著色效率電致色變元件六氰鐵化銦PAMPS普魯士藍
外文關鍵詞:coloration efficiencyelectrochromic deviceindium hexacyanoferratepoly (2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)Prussian blue
相關次數:
  • 被引用被引用:12
  • 點閱點閱:285
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本研究發展一個新的電致色變系統,由普魯士藍(PB)與六氰鐵化銦(InHCF)所組成,中間電解質則搭配摻雜飽和的氯化鉀之固態導離高分子poly(2-acrylamido-2-methylpropane sulfonic acid)(K-PAMPS),此系統(PB/InHCF Electrochromic Device,或簡稱PIECD)呈現藍色與淺黃色之間的顏色變化,操作電壓在0V與1.2V (InHCF vs. PB),在690nm波長下的著色效率約103cm2/C。發展此系統的主要動機在於不需要預先著色任一極,有別於一般互補式電致色變元件,因此較容易控制兩極電量。另外,此系統的兩極均由普魯士藍類似物所組成,因此兩極在電化學性質上有很高的搭配性。本研究利用循環伏安法、階梯電位及同步紫外光/可見光光譜,分析薄膜單極與元件的電致色變性質。
本研究從PB與InHCF單極薄膜的基本性質分析開始。PB為氧化著色物質,在氧化電位0.5V (vs. Ag/AgCl/Sat’d KCl)下呈藍色,在還原電位0V下完全還原成透明無色的ES,從光譜分析,其在波長690nm下有最大的穿透率變化,約60%。InHCF亦為氧化著色物質,在氧化電位1.2V (vs. Ag/AgCl/Sat’d KCl)下呈淺黃色,在還原電位0.5V下為透明無色的KInHCF,從光譜分析,其在波長410nm下有最大的穿透率變化,約20%,因此可視為透明的輔助電極。利用階梯電位及同步光譜,分析PB與InHCF在K-PAMPS的去色著色響應,InHCF的去色與著色應答時間均較PB長。
在瞭解單極的電致色變特性之後,就針對PB與InHCF配合K-PAMPS固態電解質所組成的電致色變元件,PIECD,進行一系列基礎電致色變性質的分析。由於本系統不需要預先著色,因此元件有不錯的靜態穩定性。接著藉由改變兩極薄膜的電量比,實驗發現元件兩極之電量比為1時,電壓最高;並建立本系統之光學設計模型,與實驗數據比較有不錯的一致性,兩者均得到相同的結論,當兩極電量比越趨近於1,元件的穿透率調幅越大。
本研究最後探討PAMPS中KCl的摻雜程度對單極薄膜與整個元件性質之影響,實驗結果顯示PB單極薄膜對K+有較高的專一性,當K+濃度不足時,並不容易選擇H+來反應,因而反應電量隨KCl的摻雜量的減少而減少;InHCF單極薄膜對K+的專一性則不如PB,當K+濃度不足,會涉及H+參與反應。而元件在莫耳比(KCl)/ (AMPS) = 0.220的電解質中,有最快的去色速度,我們嘗試從PB與InHCF單極在含不同K+的PAMPS中之反應速率,來解釋元件之去色與著色反應機制。在元件的穩定性方面,我們發現元件對K+有較可逆的反應,其循環壽命隨著KCl的摻雜量增加而增加,當使用莫耳比(KCl)/(AMPS) = 0.546的電解質製作元件時約有2000圈以上之循環壽命,而能維持原有光學密度的50%。
In this study, a new complementary electrochromic device (ECD) based on Prussian blue (PB) and indium hexacyanoferrate (InHCF) was developed and was sandwiched by a solid polymer electrolyte, KCl-saturated poly (2-acrylamido-2-methylpropane sulfonic acid) (K-PAMPS). This PB/InHCF Electrochromic Device (PIECD) exhibits blue-to-yellowish electrochromism with a high coloration efficiency of ca. 103 cm2/C at 690 nm. The operating voltages of this device was determined to be 1.2 V and 0 V (InHCF vs. PB) respectively. The main motivation to develop this PIECD is that it’s not necessary to precolor either electrochromic (EC) electrode before cell assembly so that the charge balance between two electrochromic films becomes much easier than other complementary ECDs. Furthermore, both electrodes in this system were Prussian blue analogues so that they have high compatibility in the electrochemical aspect. In this work, the EC properties of the thin films and the devices were analyzed by cyclic voltammetry, potential step, and in situ UV-VIS spectrophotometry.
This work begins with the search for the fundamental properties of PB and InHCF thin films. Prussian blue, an anodically coloring material, shows blue at its anodic state, (0.5 V vs. Ag/AgCl/Sat’d KCl) and is reduced to the colorless Everitt’s salt (ES) (0 V vs. Ag/AgCl/Sat’d KCl). The transmittance modulation at 690 nm gives the largest value, ca. 50 %. InHCF can also be colored anodically; it displays yellowish at its anodic state (1.2 V vs. Ag/AgCl/Sat’d KCl) and becomes colorless (KInHCF) at 0 V vs. Ag/AgCl/Sat’d KCl. From its spectra, the largest transmittance modulation appears at 410 nm, ca. 20 %. Therefore, InHCF can serve as a pseudo-transparent counter electrode. The bleaching and coloring responses of PB and InHCF films were carried out in K-PAMPS by potential steps and in situ spectral measurements. It is observed that either bleaching or coloring response time of InHCF is longer than that of the PB.
After characterizing the individual electrodes, we focus on the PIECD and analyze its fundamental electrochromic properties. It is shown that the at-rest stability of the PIECD is reasonable reasonably good, because there is no need to precolor PIECD. Moreover, by changing the charge capacity ratio of the two electrodes (R), it is found experimentally that the cell voltage reaches the maximum at R = 1. Besides, we derived the design equations for this system, which are consistent with our experimental results. It was observed that the closer the charge capacity ratio to unity, the wider the transmittance window of the device.
Finally, we discuss how the extent of KCl-doped PAMPS affects the properties of the PIECDs. It revealed that PB films have higher specificity for K+; that is, when K+ is deficient, PB films don’t react with H+ so that the consumed charge decreases with the extent of KCl- doped PAMPS. However, InHCF films show less specificity for K+ than that of PB films; H+ will take part in the redox reaction of the InHCF films, when K+ is deficient. For the PIECD, it has the fastest bleaching rate at the molar ratio (KCl)/(AMPS) = 0.220. We try to explain the PIECD’s bleaching and coloring mechanisms through the individual reaction rates for PB and InHCF films switched in various K+-doped PAMPSs. As for the stability of the PIECD, it’s discovered that the PIECD shows higher reversibility in the presence of K+ and cycle life increases with the increase of KCl in PAMPS. For example, a cell made with (KCl)/(AMPS) = 0.546 maintained its original optical density at the end of 2000 cycles.
中文摘要 I
英文摘要 III
謝誌 VI
目錄 VII
表目錄 X
圖目錄 XI
符號說明 XVII
第一章 緒論 1
1-1前言 1
1-2電致色變系統簡介 3
1-2-1電致色變材料 3
1-2-2電致色變之類型與結構 5
1-2-2-1溶液型 (Solution type) 5
1-2-2-1沈積型 (Precipitation type) 6
1-2-2-3薄膜型 (Thin-film type) 7
1-3全固態電致色變系統介紹 10
1-4研究動機與目的 15
1-5研究架構 17
1-6系統結構 19
第二章 文獻回顧 20
2-1普魯士藍(PB)與六氰鐵化銦(InHCF)之簡介 20
2-1-1普魯士藍之簡介 20
2-1-2普魯士藍類似物之簡介 21
2-1-3 InHCF之簡介 24
2-2元件性質與兩極電量之關係 28
第三章 實驗部分 34
3-1儀器設備 34
3-2實驗藥品 35
3-3實驗方法 36
3-3-1導電玻璃之前處理 36
3-3-2定電流析鍍普魯士藍薄膜 36
3-3-3循環伏安法析鍍InHCF薄膜 36
3-3-4固態電解質PAMPS單體溶液之製備 37
3-3-5 PB/InHCF元件之組裝 39
3-4電化學特性分析 39
3-5 UV-VIS光譜分析 40
3-6 元件性質與兩極電量比之關係 40
3-7 元件性質與電解質中KCl添加量之關係 41
第四章 PIECD之電化學與光學性質分析 46
4-1普魯士藍與InHCF薄膜之電化學與光學分析 46
4-1-1薄膜的製備 46
4-1-2循環伏安分析 50
4-1-3光學特性分析 53
4-1-4 階梯電位下的去色與著色響應 61
4-2 PB/InHCF電致色變元件 63
4-2-1元件安全操作電壓的決定 63
4-2-2元件的光譜分析與著色效率 68
4-2-3電解質之選擇 71
4-2-4元件之靜態穩定性 72
4-3兩極電量比對PB/InHCF電致色變元件之影響 78
4-3-1光學模型推導部分元件穿透率與其電量之關係 78
4-3-2元件電壓與兩極電量比之理論推導 85
4-3-3 實驗結果與理論之比較 88
第五章 PAMPS中鉀離子摻雜程度對薄膜與元件性能之影響 102
5-1電解質中鉀離子摻雜程度對單極薄膜之影響 102
5-1-1鉀離子添加量對薄膜電化學性質之影響 103
5-1-2鉀離子添加量對薄膜光學性質之影響 108
5-2電解質中鉀離子摻雜程度對元件性能之影響 116
5-2-1鉀離子添加量對元件電化學反應之影響 116
5-2-2鉀離子添加量對元件光學性質之影響 118
5-2-3鉀離子添加量對元件循環壽命之影響 126
第六章 總結 134
第七章 建議 140
第八章 參考文獻 142
附錄A AMPS單體溶液與SPE之性質分析 148
附錄B元件電量與穿透率之模擬 153
附錄C元件電量與穿透率之模擬 159
[1] 邱顯堂, 化工, 第38卷, 第2期, 74 (1991).
[2] 何國川, 化工, 第37卷, 第3期, 32 (1990).
[3] J. R. Platt, J. Chem. Phys., 34 862 (1961).
[4] S. K. Deb, U. S. Patent, No. 3,521,941 (1970).
[5] F. G. K. Baucke, Mater. Sci. & Eng., B10, 285 (1991).
[6] 陳建全, “普魯士藍類似物薄膜電極之製備及其電致色變性質”, 國立成功大學, 台南 (1995).
[7] M. A. Habib and D. Glueck, Sol. Energy Mater., 18, 127 (1989).
[8] T. Yoshino, N. Bada, H. Masuda, and K. Arai, in Electrochromic Materials, M. K. Carpenter and D. A. Corrigan, Editors, PV 90-2, pp.89-98, The Electrochemical Society Softbound Proceedings Series, Pennington, NJ (1990).
[9] P. Pflunger, H. Kunzi, and H. Guntherodt, Appl. Phys. Lett., 35, 771 (1979).
[10] J. Nagai, Sol. Energy Mater. and Sol. Cells, 31, 291 (1993).
[11] S. Gottesfeld, J. Electrochem. Soc., 127, 272 (1980).
[12] K. Boufker, J. Appl. Electrochem., 25, 797 (1995).
[13] T. Ohtasuka, M. Masuda, and N. Sato, J. Electrochem. Soc., 134, 2406 (1987).
[14] K. Itaya, K. Shibayama, H. Akahshi, and S. Toshima, J. Appl. Phys., 53, 804 (1982).
[15] D. D. Deford and A. W. Davidson, J. Am. Chem. Soc., 73, 1469 (1951).
[16] Z. Gao, G. Wang, P. Li, and Z. Zhao, Electrochim. Acta, 36, 147 (1991).
[17] P. J. Kulesza and M. Faszynska, J. Electroanal. Chem., 252, 461 (1988).
[18] R. V. Pole, G. T. Sincerbox, and M. D. Shattuck, Appl. Phys. Lett., 28, 494 (1976).
[19] S. C. Yang, in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. M. Lampert and C. G. Granqvist (Eds), Vol. IS4, pp.335-365, SPIE Opt. Engr. Press, Bellingham, WA(1990).
[20] N. Leventis, in 1994 McGraw-Hill Yearbook of Science and Technology, 6, pp.153-156, McGraw-Hill Book Co. New York (1994).
[21] P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications, VCH, Weinheim, Germany (1995).
[22] J. P. Randin, J. Electrochem. Soc., 129, 1215 (1982).
[23] R. D. Giglia, U. S. Patent, No. 4,375,318 (1983).
[24] H. Tada, Y. Bito, K. Fujino, and H. Kawahara, Sol. Energy Mater., 16, 509 (1987).
[25] H. Tada, Y. Bito, K. Fujino, and H. Kawahara, in: L. T. Romankiw and T. Osaka (Eds), Electrochemical Technology in Electronics, PV 88-23, pp. 325-337, the Electrochemical Society Softbound Proceedings Series, Pennington, NJ (1987).
[26] H. Tada, Y. Bito, K. Fujino, and H. Kawahara, U. S. Patent, No. 4,726,664 (1988).
[27] M. A. Habib, S. P. Maheswari, and M. K. Carpenter, J. Appl. Electrochem., 21, 203 (1991).
[28] M. A. Habib and S. P. Maheswari, J. Electrochem. Soc., 139, 2155 (1992).
[29] N. Oyama, T. Ohasaka, M. Menda, and H. Ohno, Denki Kagaku, 57, 1172 (1989).
[30] T. Miyamoto, M. Ura, S. Kazama, T. Kase, and Y. Maeda, U. S. Patent, No. 4,645,307 (1987).
[31] H. Inaba, K. Nakase, Y. Yanagida, and H. Nishii, U. S. Patent, No. 4,773,741 (1988).
[32] M. Kawai, H. Miyagi, and M. Ura, U. S. Patent, No. 4,801,195 (1989).
[33] T. Kase, M. Kawai, and M. Ura, SAE Technical Paper Series, No. 861,362 (1986).
[34] T. Kase, T. Miyamoto, T.Yoshimoto, Y. Ohasawa, H. Inaba, and K. Nakase, in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. M. Lampert and C. G. Granqvist (Eds.), Vol. IS4, p. 504, SPIE Opt. Engr. Press, Bellingham, WA(1990).
[35] K. C. Ho, T. G. Rukavina, and C. B. Greenberg, J. Electrohem. Soc., 141, 2061 (1994).
[36] K. C. Ho, Electrochim. Acta, 44, 3227 (1999).
[37] T. Yoshida, K. Okabayashi, T. Asaoka, and K. Abe, Abstract 380, p. 552, The Electrochemical Society Extended Abstracts, Vol. 88-2, The Electrochemical Society, Inc., Pennington, NJ (1988).
[38] J. Minoura, T. Uemura, S. Takahashi, T. Ito, and K. Okabayashi, U. S. Patent, No. 5,054,895 (1991).
[39] M. T. Nguyen and L. H. Dao, J. Electrochem. Soc., 136, 2131 (1989).
[40] L. H. Dao and M. T. Nguyen, in Electrochromic Materials, M. K. Carpenter and D. A. Corrigan, Editors, PV 90-2, pp. 246-260, The Electrochemical Society Proceedings Series, Pennington, NJ (1990).
[41] (a) B. P. Jelle, G. Hagen, S. M. Hesjevik, and R. Ødegård, in Solid State Ionics, M. Balkanski, T. Takahashi, and H. L. Tuller, (Eds.), Proc. of Symposium A2, International Conference on Advanced Materials, ICAM-91, Strasbourg, France, 27-31 May, 1991, Elsevier, North-Holland, pp. 661-665 (1992); (b) B. P. Jelle, G. Hagen, and R. Odegard, Electrochim. Acta, 37, 1377 (1992).
[42] M. C. Bernard, A. Hugot-Le Goff, and W. Zeng, Electrochim. Acta, 44, 781 (1998).
[43] K. C. Ho, L. C. Chen and C. C. Lee, Proc. of SPIE, 3788, 120 (1999).
[44] L. C. Chen, Y. H. Huang and K. C. Ho, J. Solid State Electrochem, accepted (2002).
[45] Diesbach cited in Gmelin, Handbuch der Anorgannischen Chemie, 59 Teil B (1704).
[46] V. D. Neff, J. Electrochem. Soc., 125, 886 (1978).
[47] C. A. Lundgren and R. W. Murray, Inorg. Chem., 27, 933 (1988).
[48] J. F. Keggin and F. D. Miles, Nature (London), 137, 577 (1936).
[49] H. J. Buser, D. Schwarzenbach, W. Petter and A. Ludi, Inorg. Chem., 16, 2704 (1977).
[50] D. Ellis, M. Eckhoff, and V. D. Neff, J. Phys. Chem. 85, 1225 (1981).
[51] K. Itaya, T. Ataka, S. Toshima, J. Am. Chem. Soc., 104, 4767 (1982).
[52] R. J. Mortimer and D. R. Rosseinsky, J. Chem. Soc. Dalton. Trans., 2059 (1984).
[53] D. E. Stilwell, K. H. Park, and M. H. Miles, J. Appl. Electrochem., 22, 325 (1992).
[54] L. C. Chen, “On the Electrochemistry of Insertion Compounds and Their Applications in Electrochromism,” PhD Dissertation, National Taiwan University, Taipei, Taiwan (2001).
[55] Z. Jin. and S. Dong, Electrochim. Acta, 35, 1057 (1990).
[56] M. Jiang, X. Zhou, and Z. Zhao, J. Electroanal. Chem., 292, 289 (1990).
[57] (a) S. Dong and F. Li, J. Electroanal. Chem., 210, 31 (1986); (b) M. K. Carpenter, R. S. Conell, and S. J. Simko, Inorg. Chem., 29, 845, (1990).
[58] M. Jiang, X. Zhou, and Z. Zhao, J. Electroanal. Chem., 287, 389 (1990).
[59] A. B. Borcarsly, and S. Sinha, J. Electroanal. Chem., 137, 159 (1982).
[60] L. M. Siperko, and T. Kuwana, J. Electrochem. Soc., 130, 396 (1983).
[61] J. Joseph, H. Gomathi, and G. P. Rao, J. Electroanal. Chem., 431, 231 (1997).
[62] S. Dong and Z. Jin, J. Electroanal. Chem., 256, 193 (1988).
[63] M. Jiang, and Z. Zhao, J. Electroanal. Chem., 292, 281 (1990).
[64] S. Liu, H. Li, M. Jiang, and P. Li, J. Electroanal. Chem., 426, 27 (1997).
[65] T. Yoshimoto, M. Kawai, and H. Kunimi, U. S. Patent, No. 4,526,695 (1985).
[66] (a) K. P. Rajan and V. D. Neff, J. Phys. Chem., 86, 4361 (1982); (b) K. Itaya, I. Uchida, and S. Toshima, Denki Kagaku, 151, 89 (1983).
[67] P. J. Kulesza, J. Electroanal. Chem., 220, 295 (1987).
[68] E. Czirok, J. Bacskai, P. J. Kulesza, G. Inzelt, A. Wolkiewicz, K. Miecznikowski, M. A. Malik, J. Electroanal. Chem., 405, 205 (1996).
[69] M. A. Malik, G. Horanyi, P. J. Kulesza, G. Inzelt, V. Kertesz, R. Schmidt, and E. Czirok, J. Electroanal. Chem., 452, 57 (1998).
[70] P. J. Kulesza and M. Faszynska, Electrochim. Acta., 34, 1749 (1989).
[71] S. Dong and Z. Jin, Electrochim. Acta, 34, 963 (1989).
[72] K. C. Ho and J. C. Chen, J. Electrochem. Soc., 145, 2334 (1998).
[73] (a) G. E. De Benedetto and T. R. I. Cataldi, Langmuir, 14, 6274 (1998); (b) T. R. I. Cataldi and G. E. De Benedetto, J. Electroanal. Chem., 458, 149 (1998).
[74] R. D. Rauh and S. F. Cogan, J. Electrochem. Soc., 140, 378 (1993).
[75] K. C. Ho, Sol. Energy Mater. and Sol. Cells, 56, 271 (1999).
[76] L. C. Chen and K. C. Ho, Electrochim. Acta, 46, 2159 (2001).
[77] L. C. Chen and K. C. Ho, Electrochim. Acta, 46, 2151 (2001).
[78] L. C. Chen, K. S. Tseng and K. C. Ho, J. Solid State Electrochem, (in press).
[79] R. D. Rauh, Electrochim. Acta, 44, 3165 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔