(3.239.33.139) 您好!臺灣時間:2021/03/08 17:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:韋明新
研究生(外文):Ming-Hsin Wei
論文名稱:壓克力系列光波導材料之光學特性研究
論文名稱(外文):Study on Optical Properties of Acrylate-Based Polymer Waveguide Materials
指導教授:陳文章陳文章引用關係
指導教授(外文):Wen-Chang Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:94
中文關鍵詞:壓克力光纖離心製程有機-無機混成光學平面波導二氧化鈦二氧化矽光傳損失
外文關鍵詞:acrylateoptical fiberthe centrifugal processorganic-inorganic hybridizationoptical planar waveguidetitaniasilicaoptical loss
相關次數:
  • 被引用被引用:0
  • 點閱點閱:353
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:0
高分子系列材料近年來在短距離光通訊以及積體光學元件等應用上被認為是極具應用潛力的材料。本論文乃針對高分子光波導做探討研究。第一部份是針對以離心製程製備而得的漸變折射率高分子光纖進行徑向折射率分佈以及頻寬的理論分析,第二部份則是壓克力-無機氧化物混成光學平面波導的製備及光學特性研究。
在第一部份關於漸變折射率高分子光纖的研究中,研究的系統乃是氟化壓克力/小分子以及壓克力/小分子摻合系統。漸變折射率高分子光纖的折射率分佈以及頻寬均受到一特徵參數k之影響,而k乃由材料性質以及製程參數所決定。當k值由0開始逐步增大,折射率分佈的特徵值g會因高分子與小分子間之分離程度增加而出現先降後升之情形。至於相對折射率差δ則是持續隨k增加而上升至一定值。折射率分佈隨k之變化趨勢會使光纖的模態色散出現局部最小值,此時亦是其頻寬的最大值。氟化與非氟化系統的在k不為0時所對應的最大頻寬分別是6.7以及3.2 Gb/s。光源波長對頻寬之影響僅在k為0時較為顯著,此乃因此時頻寬主要是由對波長敏感的模內色散所決定。由理論分析之結果可知經由離心製程可製得頻寬高達數個Gb/s之壓克力漸變折射率高分子光纖。
在第二部份的研究中,由壓克力高分子-無機氧化物混成材料製備而得之薄膜具有優良的光學透明度以及表面平坦度,且其光學性質諸如折射率以及近紅外光之光學視窗等具有可調控的特性。混成薄膜的折射率隨二氧化鈦含量上升而上升,但隨二氧化矽含量上升而下降。而製得之混成光學薄膜在近紅外光區之吸收圖譜可藉由改變混成材料中無機氧化物之含量而加以平移。因此通訊波段內之光學視窗可藉改變無機氧化物之含量來加以調控。近紅外光圖譜之平移乃由碳氫鍵之不諧和常數隨無機物含量之變化趨勢來加以解釋。本研究製得之壓克力-二氧化鈦及壓克力-二氧化矽混成光學平面波導具有極低之光傳損失,其在通訊波長1310 nm下之光傳損失值分別在0.24至0.38 dB/cm以及0.26至0.37dB/cm之間。光傳損失之值乃隨無機氧化物含量上升而降低,此現象乃肇因於近紅外光吸收圖譜之紅移與混成材料中碳氫鍵數量密度之下降。至於作為對照組的氟化壓克力-二氧化鈦混成平面波導壓克力-二氧化鈦及壓克力-二氧化矽混成光學平面波導之光傳損失已可比美氟化壓克力-二氧化鈦混成平面波導。基於壓克力成本遠較氟化壓克力為低以及與無機氧化物混成後具低光傳損失的特點,壓克力-無機氧化物混成材料極具作為光波導材料之潛力。

Acrylate-based materials have been regarded as promising candidates for applying to short-range optical communication and integrated optics. There are two parts of studies in this thesis. One is theoretical analysis on the refractive index distribution (RID) and bandwidth (BW) of acrylate-based GI POFs prepared by a centrifugal field process. The other is the synthesis and characterization on optical properties of the acrylate-oxide hybrid optical planar waveguides.
For the studies of acrylate-based GI POFs, the studied material systems were poly(hexafluoroisopropyl 2-fluoroacrylate) (PHFIP 2-FA)/dibutyl phthalate (DBP) and poly(methyl methacrylate) (PMMA)/benzyl benzoate (BEN). The RID and BW were significantly affected by an essential parameter, k, which was related to the materials properties (density difference, molecular weight of polymer) and processing properties (rotating speed, temperature, and radius). As k increased, characteristic index g of RID decreased to a minimum and then increased sharply due to the separation of the polymer and dopant. On the other hand, relative refractive index difference δ of RID increased to a steady value with k. The variation of RID with k resulted in a local minimum of the intermodal dispersion and thus a maximum bandwidth was obtained. The maximum BW of the PHFIP 2-FA/DBP and PMMA/BEN systems were 6.7 and 3.2 Gb/s, respectively, for the case of k not equal to zero. The wavelength of light source affected the BW significantly only at k equal to zero because of the importance of intramodal dispersion in this case. From the results of theoretical analysis it is known that the centrifugal process is capable to prepare acrylate-based GI POFs with high transmission rate.
For the second part of this thesis, the prepared acrylate-inorganic oxide hybrid materials had excellent optical transparency and film uniformity. They also had tunable optical properties such as refractive index and NIR optical windows. The refractive indices of the hybrid thin films increased with increasing with the titania content but decreased for the case of silica content. The prepared hybrid optical thin films were able to shift the near infrared (NIR) optical absorption spectra by the inorganic oxide content. Hence, the optical window for communication was thus tuned through the oxide content in the hybrid materials. The variation on the anharmonicity of the C-H bond through the oxide content was used to explain the spectrum shifting. Very low loss optical planar waveguides in the range of 0.24-0.38 dB/cm and 0.26-0.37 dB/cm were obtained for PMMA-titania and PMMA-silica hybrid materials at communication wavelength 1310 nm, respectively. Optical loss of fluorinated acrylate-titania hybrid optical planar waveguide at 1310 nm was 0.24dB/cm, which was close to those from PMMA-oxide hybrid materials. The optical loss was decreased with increasing the inorganic oxide content, which was due to the shifting of the optical spectrum and the reducing of the C-H bonding density. Optical losses of both PMMA-titania and PMMA-silica hybrid optical planar waveguide are comparable to that of fluorinated acrylate-titania hybrid optical waveguides, even the lowest value for the organic-inorganic materials reported in the literature. Therefore PMMA-oxide hybrid materials are promising candidates of low-loss polymer-based waveguide materials.

Abstract i
中文摘要 iii
Table Captions v
Figure Captions vi
Table of Contents ix
Chapter 1 Introduction 1
1-1 Brief Introduction to Optical Waveguides 1
1-2 Fundamental Structures and Properties of optical waveguides 2
1-2-1 Fundamental structures of optical fibers 2
1-2-2 Fundamental structures of optical planar waveguides 3
1-2-3 Fundamental properties of optical waveguides 4
1-3 Introduction to the development of GI polymer optical fibers 9
1-4 Development of optical planar waveguides based on polymers 12
1-5 Research Topics 16
Chapter 2 Experimental 25
2-1 Materials 25
2-2 Instrumentation 27
2-3 Synthesis scheme 29
2-3-1 Synthesis of hybrid materials and optical planar waveguides 29
2-3-2 Characterization of hybrid materials and optical thin films 31
Chapter 3 Theoretical Analysis on the RID and BW of GI POF Prepared by a Centrifugal Process 38
3-1 Modeling 38
3-1-1 RID of GI POFs by the centrifugal field process 38
3-1-2 Bandwidth analysis of GI POFs by a Centrifugal field process 40
3-2 Results and Discussions 42
3-2-1 Effect of k on RID 43
3-2-2 Effect of g 48
3-2-3 Effect of λ 49
3-3 Conclusions 50
Chapter 4 Properties of Acrylate-Oxide Hybrid Materials and Their Application on Optical Planar Waveguides 60
4-1 FTIR characterization of acrylate-oxide hybrid materials 60
4-2 Properties of prepared acrylate-oxide hybrid thin films 61
4-3 Near-infrared spectra of acrylate-oxide hybrid materials 63
4-4 Optical losses of acrylate-titania hybrid optical planar waveguides 67
4-5 Conclusions 68
Chapter 5 Conclusions and Future Work 90
References 92
Appendix-Publication List 95

1. R. G. Hunsperger, Integrated Optics: Theory and Technology, 3rd ed., SPRINGER -VERLAG, New York (1991), ch.1.
2. J. H. Franz and V. K. Jain, Optical Communications, Alpha Science International Ltd., Pangbourne (2000), ch 4
3. J. C. Palais, Fiber Optic Communications, 4th ed., PRENTICE HALL, New Jersey(1998), ch4&ch5
4. G. Yabre, J. Lightwave Technol., 18, 166-177(2000)
5. R. Olshansky and D. B. Keck, Appl. Opt., 15, 483-491(1976).
6. T. Ishigure, E. Nihei, and Y. Koike, Appl. Opt., 35, 2048-2053 (1996).
7. T. Ishigure, E. Nihei, and Y. Koike, Polymer J., 28, 272-275 (1996)
8. G. Yabre, J. Lightwave Technol., 18, 869-877 (2000).
9. T. Ishigure, M. Kano and Y. Koike, J. Lightwave Technol., 18, 959-965 (2000).
10. Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, J. Polym. Sci. Part B, 30, 879-885(1992)
11. G. McCulloch and H. Yoon, J. Polym. Sci. A, 33, 1177-1183 (1995)
12. W. Groh, Makromol. Chem, 189, 2861-2874 (1988)
13. T. Ishigure, E. Nihei, and Y. Koike, Appl. Opt., 35, 2048-2053 (1996).
14. L. Eldada, IEEE J. of Selected Topics in Quantum Electronics, 6, 54-68(2000)
15. S. Ando, T. Matsuura, and S. Sasaki, ACS Symposium series: Polymers for Microelectronics, 304-322(1994)
16. C. Xu, L. Eldada, C. Wu, R. A. Norwood, L. W. Shacklette, and J. T. Yardley, Chem. Mater., 8, 2701-2703(1996)
17. M. Yoshida and P. N. Prasad, Chem. Mater., 8, 235-241(1996)
18. J. Wen and G. L. Wilkes, Chem. Mater., 8, 1667-1681(1996)
19. H. Murofushi, POF’96, 17-23(1996)
20. T. Onishi, H. Murofushi, Y. Watanabe, Y. Takano, R. Yoshida, and M. Naritomi, POF’98, 39-42(1998)
21. T. Onishi and Y. Takano, POF’99, 94-97(1999)
22. U. S. Patent 4,754,009
23. F. V. Duijnhoven and C. Bastiaansen, Adv. Mater., 11, 567-570(1999)
24. W. C. Chen, Y. Chang and M. H. Wei, J. Polym. Sci. B, 38, 1764-1772(2000)
25. W. C. Chen, Y. Chang and J. P. Hsu, J. Phys. Chem. B, 103, 7584-7590(1999)
26. C. Pitois, S. Vukmirovic, A. Hult, D. Wiesmann, and M. Robertsson, Macromolecules, 32, 2903-2909(1999)
27. W. C. Chen and S. J. Lee, Polym. J., 32, 67-72(2000)
28. L. H. Lee and W. C. Chen, Chem. Mater., 13, 1137-1142(2001)
29. Y. Koike and T. Ishigure, J. Lightwave Technol., 13, 1475-1489 (1995).
30. E. Nihei, T. Ishigure, and Y. Koike, Appl. Opt., 35, 7085-7090(1996).
31. T. Ishigure, M. Sato, E. Nihei, and Y. Koike, Jpn. J. Appl. Phys., 37, 3986-3991 (1998).
32. M. Sato, T. Ishigure, and Y. Koike, J. Lightwave Technol., 18, 952-958 (2000).
33. T. Ishugure, Y. Koike, and J. W. Fleming, J. Lightwave Technol., 18, 178-184(2000).
34. R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, Appl. Phys. Lett., 71, 3625-3627 (1997).
35. A. F. Garito, J. wang, and R. Cao, Science, 281, 962-967 (1998).
36. S. Y. Yang, Y. H.Chang, B. C. Ho, W. C. Chen, and T. W. Tseng, Polym. Bull., 34, 87-91(1995)
37. B. C. Ho., J. H. Chen, W. C. Chen, S. Y. Yang, J. J. Chen, and T. W. Tseng, Polym. J., 27, 310 (1995)
38. Van Krevelen, D. W., Properties of Polymers, 3rd ed., ELSEVIER, Amsterdam, (1990), Ch. 4໢.
39. C. Pitois, S. Vukmirovic, and A. Hult, Macromolecules, 32, 2903-2909 (1999)
40. S. Motakef, T. Suratwala, R. L. Roncone, J. M. Boulton, G. Teowee, G. F. Neilson, D. R. Uhlmann, J. Non-Cryst. Solids, 178, 31 (1994)
41. K. J. Laidler and J. H. Meiser, Physical Chemistry, 3rd ed., Houghton Mifflin, Boston, (1999) Ch. 13
42. A. Burneau and C. Carteret, Phys. Chem. Chem. Phys., 2, 3217-3226(2000)
43. W. C. Chen, S. J. Lee, L. H. Lee, J. L. Lin, J. Mater. Chem., 9, 2999-3003 (1999)
44. N. Yamada, I. Yoshinaga, and S. Katayama, J. Appl. Phys., 85, 2423-2427 (1999)
45. C.Z. Xu, L. Eldada, C. J. Wu, R. A. Norwood, L. W. Shacklette, and J. T. Yardley, Chem. Mater., 8, 2701-2703(1996)
46. T. Onishi, H. Murofushi, Y. Watanabe, Y. Takano, R. Yoshida, and M. Naritomi, POF’98, 39-42(1998)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔