跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/21 06:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉祐瑋
研究生(外文):liu yu-wei
論文名稱:氧化鈰粉體之水熱合成與動力分析
論文名稱(外文):Hydrothermal synthesis and reaction kinetics of cerium oxide particles
指導教授:呂宗昕
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:87
中文關鍵詞:氧化鈰水熱法
外文關鍵詞:cerium oxidehydrothermal method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用水熱法製程於低溫的條件下製備出具結晶性的氧化鈰與碳酸氫氧鈰粉體。藉由改變初始溶液中尿素與氨水比例,以探討氨水濃度對水熱法所得到的粉體晶相、顯微結構、粉體組成。並藉由XRD定量分析探討碳酸氫氧鈰在高溫下分解成氧化鈰的反應機制,並觀察轉化率與粉體形態的關係。
發現氨水的添加量對於水熱反應後所得到的粉體晶相與形態有很顯著的影響。隨著氨水的添加,水熱後所得之粉體主要形態逐漸由梭狀斜方晶相的碳酸氫氧鈰變成圓球狀立方晶相的氧化鈰。有添加氨水的系統中,水熱反應後所得到的粉體為斜方晶相的碳酸氫氧鈰與立方晶相的氧化鈰的混合物,當添加系統中氨水的添加量增加到一定比例後,水熱反應後的粉體即為單相氧化鈰。藉由TGA的分析發現,單相碳酸氫氧鈰分解成氧化鈰的相轉移溫度為280℃,然而隨著氧化鈰含量的增加,相轉移溫度逐漸降低,顯示氧化鈰的存在有助於碳酸氫氧鈰分解成氧化鈰反應的發生。
經由SEM分析後發現,改變尿素與氨水比例,可改變粉體結構變得較為鬆散,使其在經過煆燒急冷處理後,粉體的形態並不會有明顯的改變而維持原狀。經過高溫熱處理後發現,在熱處理的過程中氧化鈰的結晶核在碳酸氫氧鈰的晶界中生成進而成長,而造成碳酸氫氧鈰分解生成的氧化鈰具有較水熱法直接生成的氧化鈰更小的晶粒大小。
碳酸氫氧鈰在有氧化鈰的存在下,高溫處理後分解生成氧化鈰的反應機制為A2二維成核成長機制,反應活化能經計算為84 .06 kJ/mol。若與其他碳酸化合物分解成氧化物反應的活化能相互比較可以發現,本研究所得到的活化能較低,推測反應前已存在的氧化鈰會降低孕核能障且系統中的氧化鈰即為結晶核,而造成反應活化能的降低。

Cerium oxide (CeO2) and cerium hydroxide carbonate (CeOHCO3) were synthesized at low temperatures via hydrothermal process. The crystalline phase and microstructures of the synthesized powders were investigated while the ratio of the concentration of ammonia to urea was varied. The decomposition kinetic of cerium hydroxide carbonate at high temperatures was also investigated via kinetic analysis.
The amount of added ammonia significantly effected on the morphology and the crystalline phase of synthesized powders. With increasing ammonia concentration, the main structure of hydrothermally obtained powder was changed from orthorhombic cerium hydroxide carbonate to cubic cerium oxide. The structure of hydrothermally obtained powder was identified as pure phase cubic cerium oxide at high concentrations of ammonia. According to TGA analysis, the phase transformation temperature of pure cerium hydroxide carbonate to cerium oxide was 280℃. The phase transformation temperature decreased with increasing the content of cerium oxide formed in the powders. It implies that the existence of cerium oxide enhanced the decomposition reaction of cerium hydroxide carbonate. The change in the ratio of ammonia concentration to urea concentration effectively influenced the structure of obtained powders. However, the morphology of obtained powders was not changed after high-temperature quenching treatment. During the heat treatment, cerium oxide nuclei were formed and gradually grew in cerium hydroxide carbonate. As a result, the grain size of the cerium oxide obtained from the decomposition of cerium hydroxide carbonate was smaller than that of the powders obtained directly from hydrothermal reaction.
The decomposition kinetic mechanism of cerium hydroxide carbonate at high temperatures was identified to be two-dimensional nuclear and growth mechanism. The activation energy was calculated as 84.06 kJ/mol. In comparison with the decomposition activation energy of other carbonates, the activation energy obtained via this research was lower than others. It was because that the existence of cerium oxide would decrease the nucleation energy.

Abstract
摘要
圖表說明
第一章 緒論…………………………………………………….. 1
1-1 前言………………………………………………………. 1
1-2 奈米材料簡介…………………………………………….. 2
1-2-1奈米材料理論………………………………………… 2
1-2-1-1 量子尺寸效應…………………………………. 2
1-2-1-2 表面效應………………………………………. 3
1-2-1-3 庫倫阻塞與量子穿隧………………………….. 4
1-2-2 奈米材料的特性與應用……………………………… 4
1-2-2-1熱學性質………………………………………… 5
1-2-2-2表面活性………………………………………… 5
1-2-2-3 光學性質………………………………………… 5
1-2-2-4 磁學性質………………………………………… 7
1-2-3 奈米材料發展近況……………………………………. 7
1-3 氧化鈰性質與應用…………………………………………. 8
1-3-1 氧化鈰之粉體性質…………………………………….. 8
1-3-2 氧化鈰的應用………………………………………….. 9
1-4 氧化鈰的製備方法介紹……………………………………. 14
1-4-1 固相法………………………………………………….. 15
1-4-2 電化學法……………………………………………….. 16
1-4-3 融熔鹽法……………………………………………….. 16
1-4-4 氣溶膠分解法………………………………………….. 17
1-4-5 燃燒法………………………………………………….. 17
1-4-6 均勻沉澱法…………………………………………….. 17
1-4-7 溶膠凝膠法…………………………………………….. 19
1-4-8 水熱法………………………………………………….. 19
1-5反應動力理論………………………………………………... 21
1-5-1 成核成長機制……………………………………….….. 22
1-6 研究目的…………………………………………………….. 26
第二章 實驗方法…………………………………………………… 37
2-1 水熱法粉體合成……………………………………………… 37
2-2 氧化鈰生成動力分析…………………………………………. 38
第三章 氨水濃度對氧化鈰粉體合成的效應………………………. 42
3-1 水熱反應生成物之晶相分析………………………………… 42
3-2 水熱反應粉體熱行為分析………………………………….. 45
3-3 水熱粉體之顯微結構分析………………………………….. 47
第四章 碳酸氫氧鈰分解成氧化鈰之動力分析…………………… 65
4-1 高溫反應中之晶相變化…………………………………….. 65
4-2 高溫反應後粉體顯微結構變化……………………………... 66
4-3 反應動力分析………………………………………………... 67
第五章 結論…………………………………………………………... 82
5-1 水熱法氧化鈰粉體合成……………………………………… 82
5-2 碳酸氫氧鈰分解成氧化鈰之動力分析……………………… 83
參考文獻………………………………………………………………. 84

[1] 張立德,,牟季美,奈米材料與奈米結構,科學出版社,(2001).
[2] 林景正,賴宏仁,工業材料,153, 95, (1999).
[3] I. S. Jawb, C. P. Bean, Phys Rev. 100, 1060, (1955).
[4] 蘇品書,微粒子材料技術,復漢出版社,,(1989).
[5] H. F. Mark, D. F. Othmer, C. G. Overberger, and G. T. Seaborg, Encyclopedia of Chemical Technology, Vol 5, John Wiley & Sons, New York.
[6] N. Blumental, F. S. Brugner and J. E. Garner, J. Electrochem. Soc., 120, 1230 (1973) .
[7] 吳朗,電子陶瓷入門,21 (1992) .
[8] J. G. Li, T. Ikegami, J. H. Lee, and T. Mori, Acta Mater., 49, 419 (2001).
[9] T. J. Hardwick and E. Robertson, Canadian J. Chem., 29, 830 (1951).
[10] P. L. Chen and I. W. Chen, J. Am. Ceram. Soc., 76, 1577 (1993).
[11] K. Eguchi, T. Setoguchi, T. Inoue, and H. Arai, Solid State Ionics, 52, 165 (1992).
[12] I. Riess, J. Electrochem. Soc., 128, 2077 (1981).
[13] W. P. Cai, Y. Zhang, and L. Zhang, J. Phys. : Condens. Matter 10, L473 (1998).
[14] H. K. Varma, P. Mukundan, K. G. K. Warrier, and A. D. Damodaran, J. Mater. Sci. Lett., 9, 377 (1990).
[15] R. Jairath, H. Bath, S. Davies, M. Desai, K. Perry, and S. Sivaram, SPIE, 2090, 103 (1993).
[16] P. Sulcova, M. Trojan, and Z. Solc, Dyes and Pigments, 37, 65 (1997).
[17] A. Trovarelli, C. D. Leitenburg, M. Boaro, and G. Dolcetti, Catalysis Today, 50, 353 (1999).
[18] J. Y. Ying, A. Tschope, Chem. Eng., 64, 225 (1996).
[19] Cerium and Cerous Compounds, R.E. Kiork and D. F. Othmer, 3rd., Vol. 5. Wiley, Ner York 1979.
[20] S. B. Bhaduri,A. Chakraborty, and R. M. Rao, J. Am. Ceram. Soc., 71 C410 (1988).
[21] M. A. Martinez, Solid State Technology, 5, 26 (1994).
[22] J. M. Steigerwald, S. P. Murarka, R. J. Gutrnann, and D. J. Duguette, Mater. Chem. and Phys., 41, 217 (1995).
[23] R. DeJule, Semiconductor International, 11, 88 (1996).
[24] S. Sivaram, H. Bath, R. legget, A. Maury, K. Monnig, and R. Tolles, Solid State Technology, 5, 87 (1992).
[25] T. Tseng and Y. L.Wang, J. Electrochem. Soc., 144, 2, L15 (1997).
[26] G. Grivna and K. Kyler, Semiconductor International, 7, 134 (1994).
[27] G. S. Selwyn, Semiconductor International, 3, 72 (1993).
[28] A. I. Mikhalichenko, E. B. Mikhin, and Yu. B. Patrikeev, Metallurgiya, 144
(1987).
[29] R. V. Horrigan, ACS Symp., 164, 95 (1981).
[30] K. Par, Y. R. Park, U. I. Chung, Y. B. Koh, and M. Y. Lee, CMP. MIC
conf., 299 (1997)
[31] Z. H. Han, N. Guo, K. B. Tang, S. H. Yu, H. Q. Zhao, and Y. T. Qian, J. Crystal Growth, 219, 315 (2000).
[32] J. Lahaye, S. Boehm, P. H. Chambrion, and P. Ehrburger, Combustion and Flame 104 199 (1996).
[33] Y. I. Matatov-Meytal and M. Sheintuch, Ind. Eng. Chem. Res., 37, 309 (1998).
[34] J. M. Heintz and J. C. Bernier, J. Mater. Sci., 21, 1569, (1986)
[35] Y. Du, M. Yashima, M. Kakihana, T. Koura, and M. Yoshimura, J. Am. Ceram. Soc., 77, 2783 (1994) .
[37] J. L. G. Fierro, S. Mendioroz, and A. M. Olivan, J. Colloid and Inter. Sci., 107, 9 (1985).
[36] V. Briois, C. E. Williams, H. Dexpert, F. Villain, B. Cabane, F. Deneuve, and C. Magnier, J. Mater. Sci., 28, 5019 (1993).
[38] F. Li, X. Yu. H. Pan, M. Wang, and X. Xin, Solid State Sci. 2, 767 (2000).
[39] Z. Yu, F. Li, X. Ye, and X. Xin, J. Am. Ceram. Soc., 83, 964 (2000).
[40] T. Tsuzuki and P. G. McCormick, J. Am. Ceram. Soc., 84, 1453 (2001).
[42] Y. Zhou, R. J. Phillips, and J. A. Switzer, J. Am. Ceram. Soc., 78, 981 (1995).
[41] S. Gopalan and S. C. Singhal, Scripta Mater. 42, 993 (2000).
[43] F. Bondioli, A. B. Corradi, C. Leonelli, and T. Manfredini, Mater. Res. Bull., 34, 2159 (1999).
[44] B. Xia, I. W. Lenggoro, and K. Okuyama, J. Mater. Chem., 11, 2925 (2001).
[45] D. G. Lamas, R. E. Juárez, G. E. Lascalea, and N. E. Walsöe De Reca, J. Mater. Sci. Lett., 20, 1447 (2001).
[46] E. Matijevic and W. P. Hau, J. Colloid Inter. Sci., 118, 506 (1987).
[47] N. Audebrand, J. P. Auffrédic, and D. Louër, Chem. Mater., 12, 1791 (2000).
[48] M. Akinc and D. Sordelet, Advanced Ceram. Mater., 2, 232 (1987).
[49] P. L. Chen and I. W. Chen, J. Am. Cream. Soc., 76, 1577 (1993).
[50] X. Chu, W. I. Chung, and L. D. Schmidt, J. Am. Cream. Soc., 76, 2115 (1993).
[51] E. Tani, M. Yoshimura, S. Somiya,
[52] M. Hirano and E. Kato, J. Am. Ceram. Soc., 79, 777 (1996).
[53] M. Hirano and E. Kato, J. Am. Ceram. Soc., 82, 786 (1999).
[54] G. S. Li, S. H. Feng, and L. P. Li, J. Solid State Chem., 126, 74 (1996).
[55] Y. Hakuta, H. Terayama, S. Onai, T. Adschiri, and K. Arai, The 4th International Symposium on Supercritical Fluids, May 11-14, Sendai, Japan, (1997).
[56] S. Dikmen, P. Shuk, and M. Greenblatt, Solid State Ionics 126, 89 (1999).
[57] M. Avrami, J. Phys. Chem., 7, 1103 (1939).
[58] M. Avrami, J. Phys. Chem., 8, 212 (1939).
[59] M. Avrami, J. Phys. Chem., 9, 177 (1941).
[60] The Theory of Transformations in Matels and Alloys, J. W. Christian (1974).
[61] Element of X-ray Diffraction, B. D. Cullity, 2nd ed., 284, (1977).
[62] Powder Diffraction File, Card no. 41-13, Joint Committee on Powder Diffraction Standards Swqrthmore, PA, USA.
[63] Powder Diffraction File, Card no. 34-394, Joint Committee on Powder Diffraction Standards Swqrthmore, PA, USA.
[64] M. Hirano and E. Kato, J. Am. Ceram. Soc., 79, 777 (1996).
[65 ] Juan P. Holgado, R. Alvarez, and G. Munuera, Appl. Surf. Sci., 161, 301 (2000).
[66] Yu. A. Teterin, A. Yu. Teterin, A. M. Lebedev, and I. O. Utkin, J Electron Spectros Relat. Phenomena, 88-91, 275 (1998).
[67] H. C. Wang, and C. H. Lu, Mater. Res. Bull., 1844, 1 (2002).
[68] M. Hirano, and E. Kato, J. Am. Ceram. Soc., 82, 786 (1999).
[69] P. L. Chen and I-W. Chen, J. Am. Ceram. Soc., 76, 1577 (1993).
[70]王憲程,水熱法合成碳酸氫氧鈰粉體及其生成動力分析,國立台灣大學化學工程學研究所碩士論文 (1999).
[71] L. Yin, Y. Wang, G. Pang, Y. Koltpin, and A. Gedanken, J. Colloid Interface Sci., 246 78 (2002).
[72] C. H. Lu and H. C. Wang, Mater. Sci. Eng., B 90, 138 (2002).
[73] J. H. Sharp, J. Am. Ceram. Soc., 49, 7, 379, (1966).
[74] ”Elements of Chemical Reaction Engineering” H. S. Fogler, 3rd , Prentice-Hall Inter. Inc. (1999).
[75] T. Darroudl and A. W. Searcy, J. Phys. Chem. 85, 3971 (1981).
[76] W. D. Spencer and B. Topley, J. Chem. Soc., 2633 (1929).
[77] N. Koga, S. Takemoto, T. Nakamura, and H. Tanaka, Thermochimica Acta, 282/283, 81 (1996).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top