(54.236.58.220) 您好!臺灣時間:2021/03/09 16:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇酉申
研究生(外文):SU, YUEO-SHEN
論文名稱:高分子成膜過程之觀察
論文名稱(外文):Observation on Formation of Polumeric Membeanes
指導教授:王大銘
指導教授(外文):WANG, DA-MING
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:94
中文關鍵詞:高分子成膜聚四甲基一戊烯聚甲基丙烯酸甲酯真空乾燥冷凍萃取片狀顆粒巨型孔洞
外文關鍵詞:polymermembrane formationTPXPMMAvacuum dryingfreezing extractionlaminaemacrovoid
相關次數:
  • 被引用被引用:3
  • 點閱點閱:740
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究之主要工作在於發展高分子成膜過程之觀察技術。對於低沸點溶劑之成膜系統,如TPX/cyclohexane/1-propanol系統,我們採用液態氮冷凍及真空乾燥之方式來固定成膜過程中之結構,並移除溶劑。另一方面,對於高沸點溶劑之成膜系統,如PMMA/DMSO/H2O系統,也採用液態氮冷凍方式固定結構,但以非溶劑萃取的方法來移除溶劑。藉由結構固定及溶劑移除之技術,我們得以觀察成膜時結構變化之過程。
在TPX/cyclohexane/1-propanol系統中,本研究發現當成膜溫度為70℃時,成膜過程中結構之變化如下:由於溶劑與凝聚劑的質傳交換,鑄膜液表層形成一層高分子濃度較高之緻密層。而緻密層之後緣會形成球狀顆粒,凝聚劑會穿過顆粒間之孔隙,補充至緻密層後緣,使緻密層得以往下移動。同時球狀顆粒之後緣又會轉變形成片狀顆粒,最後得到全為片狀顆粒組成的膜結構。經由XRD分析發現,在成膜初期形成的球狀顆粒,結晶程度並不高。雖然TPX為半結晶性高分子,但球狀顆粒之生成似乎與結晶無關。同時我們也發現了文獻上未曾探討過的結晶性高分子成膜表面緻密化現象:在70℃成膜時鑄膜液表面會先分開形成顆粒,再聚集為緻密層。
在PMMA/DMSO/H2O系統中,本研究發現巨型孔洞在5sec內即可形成,支持文獻上之觀點。在成膜過程初期,鑄膜液表層處會有孔隙形成,應為相分離發生之結果,凝聚劑可經由此孔隙快速進入形成巨型孔洞,但隨著成膜時間的增加,這些表層孔隙會消失而形成緻密皮層。
關鍵字:高分子、成膜、聚四甲基一戊烯、聚甲基丙烯酸甲酯、真空乾燥、冷凍萃取、片狀顆粒、巨型孔洞。
ABSTRACT
The major aim of the present work is to develop methods for observing the evolution of structure during membrane formation. For the membrane formation system with low-boiling-point solvent, such as the TPX/cyclohexane/1-propanol system studied in this research, the structure was locked in by quenching in liquid nitrogen and the solvent was removed by vacuum drying. On the other hand, for the membrane formation system with high-boiling-point solvent, such as the PMMA/DMSO/H2O system, the structure was still locked in by quenching, but the solvent removal was carried out by nonsolvent extraction. With the developed techniques, we can successfully observe the structure change during membrane formation.
For TPX/cyclohexane/1-propanol system, the progress of membrane formation at 70℃ can be described as follows. In the beginning, the exchange of solvent and coagulant results in a gel layer of high polymer concentration. Spherical polymer particles then form at the trailing edge of the gel layer, and the coagulant passes through the pores between particles, which leads to the continuing movement of the gel front. In the meantime, the spherical particles at the trailing edge transform to laminae. At last, there forms a membrane composed of laminated particles. According to the XRD analysis, the crystallinity is low for the spherical particles formed in the initial period of membrane formation. Though TPX is a semi-crystalline polymer, it seems that the formation of the spherical TPX particles has no relevance to the crystallization process. Also we observe the phenomenon of surface densification during membrane formation for crystalline polymer which has never been reported in the literature: the particles formed near the interface between solvent and coagulant tends to aggregate to form dense top surface of membranes.
For the PMMA/DMSO/H2O system, it was observed that the macrovoids can form during 5sec, which is consistent with what was reported in the literature. As a result of phase separation, voids form near the surface of casting solution in the initial stage of membrane formation. Coagulant can pass through the voids rapidly to drive the formation of macrovoids. These voids would then disappear and lead to a dense top layer.
Key words:
polymer、membrane formation、TPX、PMMA、vacuum drying、freeze extraction、laminae、macrovoid。
目錄
誌謝…………………………………………………………Ⅰ
中文摘要……………………………………………………Ⅲ
英文摘要……………………………………………………Ⅴ
目錄 …………………………………………………… Ⅶ
圖索引………………………………………………………Ⅸ
表索引………………………………………………………XI
第一章、緒論……………………………………………………… 1
1.1、薄膜簡介………………………………………… 1
1.2、影響成膜結構因素……………………………… 2
1.3、成膜方式介紹…………………………………… 3
1.4、成膜過程研究方法之文獻回顧………………… 6
1.5、研究動機………………………………………… 7
第二章、基礎理論………………………………………………… 9
2.1、成膜理論-熱力學……………………………… 9
2.2、成膜理論-質傳動力學…………………………14
2.3、聚四甲基一戊烯(TPX)性質介紹……………… 17
2.4、PMMA高分子性質與巨型孔洞形成理論………… 20
第三章、實驗……………………………………………………… 25
3.1、實驗藥品………………………………………… 25
3.2、實驗儀器………………………………………… 26
3.3、薄膜之製備程序………………………………… 28
3.3.1、TPX薄膜製備………………………………… 28
3.3.2、PMMA薄膜製備………………………………… 30
3.4、溶劑移除方式…………………………………… 31
3.4.1、真空乾燥法…………………………………… 31
3.4.2、低溫非溶劑萃取法…………………………… 32
3.5、掃瞄式電子顯微鏡(S.E.M.)………………… 33
3.6、X光繞射(X-ray diffraction,簡稱XRD)……………… 33
第四章、結果與討論……………………………………………… 35
4.1、TPX/Cyclohexane/1-Propanol系統…………… 35
4.1.1、改變成膜溫度對成膜結構之影響…………… 36
4.1.2、以XRD分析不同成膜溫度之薄膜…………… 40
4.1.3、TPX成膜機制之回顧………………………… 43
4.1.4、70℃TPX成膜過程之觀察……………………… 46
4.1.5、70℃TPX成膜過程中結晶狀態之分析………… 54
4.1.6、溫度變化成膜實驗……………………………… 59
4.1.7、70℃成膜時發生之表面緻密化現象…………… 65
4.1.8、以XRD分析25℃成膜過程之結晶狀態………… 69
4.2、PMMA/DMSO/H2O系統...……………………… 73
4.2.1、以水或乙醇作為凝聚劑之成膜結果……… 73
4.2.2、巨型孔洞形成過程之截面結構變化觀察……… 76
4.2.3、巨型孔洞形成過程之表面結構變化觀察……… 82
第五章、結論…………………………………………………… 85
第六章、未來工作……………………………………………… 87
參考文獻………………………………………………………… 89
圖索引
第二章
圖2-1、三成分相圖……………………………………………… 11
圖2-2、四維相圖之示意圖……………………………………… 12
圖2-3、高結晶性高分子之示意相圖…………………………… 13
圖2-4、半結晶高分子之三成分示意相圖……………………… 14
圖2-5、濕式製程示意圖………………………………………… 15
圖2-6、成膜路徑示意圖………………………………………… 15
圖2-7、以不同路徑進入相分離區所得之膜結構……………… 16
圖2-8、TPX合成示意圖…………………………………………… 17
圖2-9、TPX的Chain Configuration示意圖…………………… 18
圖2-10、PMMA單體化學式……………………………………… 20
第三章
圖3-1、TPX薄膜製備分析流程圖……………………………… 29
圖3-2、PMMA薄膜製備流程圖…………………………………… 30
第四章
圖4-1、不同成膜溫度對低分子量TPX膜結構之影響………… 37
圖4-2、不同成膜溫度對高分子量TPX膜結構之影響………… 39
圖4-3、Syndiotactic poly(4-methyl-1-pentene)之XRD圖譜 40
圖4-4、以四種溫度所製備之低分子量TPX薄膜的XRD圖譜…… 41
圖4-5、以四種溫度所製備之高分子量TPX薄膜的XRD圖譜…… 42
圖4-6、低分子量TPX於25℃正丙醇中成膜過程之SEM圖……… 44
圖4-7、TPX顆粒膜成膜過程之示意圖.………………………… 45
圖4-8、高分子量TPX於70℃正丙醇中成膜過程之SEM圖……… 49
圖4-9、低分子量TPX於70℃正丙醇中成膜過程之SEM圖……… 51
圖4-10、高分子量TPX70℃成膜過程之示意圖………………… 52
圖4-11、高分子量TPX在70℃成膜過程中的XRD圖譜…………… 55
圖4-12、低分子量TPX在70℃成膜過程中的XRD圖譜…………… 57
圖4-13、溫度變化實驗示意圖…………………………………… 60
圖4-14、溫度變化實驗70℃→25℃……………………………… 61
圖4-15、溫度變化實驗25℃→70℃……………………………… 62
圖4-16、低分子量TPX進行70℃→25℃成膜之SEM表面圖……… 66
圖4-17、低分子量TPX進行25℃→70℃成膜之SEM表面圖……… 66
圖4-18、考慮表面緻密化TPX70℃成膜過程之示意圖………… 68
圖4-19、低分子量TPX在25℃成膜過程中的XRD圖譜…………… 70
圖4-20、低分子量TPX經不同乾燥程序之XRD圖譜……………… 71
圖4-21、PMMA/DMSO/H2O成膜之膜結構……………………… 74
圖4-22、PMMA/DMSO/EtOH0成膜之膜結構…………………… 75
圖4-23、不同交換時間經液態氮冷凍與冷凍萃取之SEM截面… 78
圖4-24、不同交換時間經乾冰冷凍與冷凍萃取之SEM截面…… 80
圖4-25、不同交換時間經液態氮冷凍與冷凍萃取之SEM正面… 83
表索引
第二章
表2-1、TPX基本性質…………………………………………… 19
表2-2、PMMA基本性質…………………………………………… 21
參考文獻
1. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht (1991).
2. J.Y. Lai, S.J. Huang, and S.H. Chen, “Poly (Methyl Methacrylate) /(DMF/Metal Salt) Complex Membrane for Gas Separation”, J. Membrane Sci., 74, 71 (1992).
3. D.R. Lloyd, K.E. Kinzer, and H.S. Tseng, “Microporous Membrane Formation via Thermally Induced Phase Separation. Ⅰ. Solid-Liquid Phase Separation”, J. Membrane Sci., 52, 239 (1990).
4. H. Strathmann and K. Kock, P. Amar, R.W. Baker, “The Formation Mechanism of Phase Inversion Membrane”, Desalination, 16, 179 (1975).
5. A.J. Reuvers, Membrane Formation: Diffusion Induced Demixing Processes in Ternary Systems, Ph. D. Thesis, Twenty University of Technology, Netherland (1987).
6. A. Vallat and S. Perez, “NMR Approach to Properties of Polymeric Membranes: Kinetics of Membrane Formation”, J. Polym. Sci., Part: Polym. Phys., 31, 1567 (1993).
7. A.S. Tsay, A.J. Mchugh, “A Technique for Rapid Measurement of Diffusion Coefficients”, Ind. Eng. Chem. Res., 31, 449 (1992).
8. S.P. Nunes, T. Inoue, “Evidence for Spinodal Decomposition and Nucleation and Growth Mechanisms During Membrane Formation”, J. Membr. Sci., 111, 93 (1996).
9. 黃冠勛,〝探討添加劑對巨型孔洞形成之影響〞,碩士論文,中原大學化工系,中華民國九十年。
10. 張珍永,〝TPX微孔膜之製備與應用〞,碩士論文,台灣大學化工系,中華民國九十年。
11. A.J. Reuvers, F.W. Altena, and C.A. Smolders, “Demixing and Gelation Behavior of Ternary Cellulose Acetate Solutions”, J. Polym. Sci., Polym. Phys., 24, 793 (1986).
12. A. Remuzzi and P. Boccardo, “Albumin Treatment Reduces Invitro Platelet Deposition to PMMA Dialysis Membrane”, Inter. J. Artif. Org., 16, 128 (1993).
13. R.H. Mehta, D.A. Madsen, and D.S. Kalika, “Microporous Membranes Based on Poly(Ether Ether Ketone) via Thermally- Induced Phase Separation”, J. Membrane Sci., 107, 93 (1995).
14. D.R. Lloyd, S.S. Kim, and K.E. Kinzer, “Microporous Membrane Formation via Thermally Induced Phase Separation. Ⅱ. Liquid-Liquid Phase Separation”, J. Membrane Sci., 64, 1 (1991).
15. L.P. Cheng, A.H. Dwan, and C.C. Gryte, “Membrane Formation by Isothermal Precipitation in Polyamide-Formic Acid-Water Systems. Ⅰ.Description of Membrane Morphology”, J. Polym. Sci., Polym. Phys., 33, 211 (1995).
16. L.P. Cheng, A.H. Dwan, and C.C. Gryte, “Membrane Formation by Isothermal Precipitation in Polyamide-Formic Acid-Water Systems. Ⅱ.Precipitation Dynamics”, J. Polym. Sci., Polym. Phys., 33, 223 (1995).
17. I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, and H. Strathmann, “Recent Advances in the Formation of Phase Inversion Membranes Made from Amorphous or Semi-crystalline Polymers”, J. Membrane Sci., 113, 361 (1996).
18. A.M.W. Bulte, B. Folkers, M.H.V. Mulder, and C.A. Smolders, “Membranes of Semi-Crystalline Aliphatic Polyamide Nylon 4,6: Formation by Diffusion-Induced Phase Separation”, J. Appl. Polym. Sci., 50, 13 (1993).
19. T. He, and R.S. Porter,” Characterization of Uniaxially Drawn Poly(4-Methyl-Pentene-1)” Polymer, 28, 1321 (1987).
20. T.H. Young, L.P. Cheng, D.J. Lin, L. Fane, and W.Y. Chuang, “Mechanisms of PVDF Membrane Formation by Immersion-Precipitation in Soft (1-Octanol) And Harsh (Water) Nonsolvents”, Polymer, 40, 5315 (1999).
21. D.T. Lin, L.P. Cheng, Y.J. Kang, L.W. Chen, T.H. Young, “Effects of Precipitation Conditions on the Membrane Morphology and Permeation Characteristics”, J. Membrane Sci., 140, 185 (1998).
22. T.H. Young, D.T. Lin, L.Y. Chen, Y.H. Huang, and W.Y. Chiu, “Membrane with a Particulate Morphology Prepared by a Dry-Wet Casting Process”, Polymer, 40, 5257 (1999).
23. T.H. Young, D.J. Lin, J.J. Gau, W.Y. Chuang, and L.P. Cheng, “Morphology of Crystalline Nylon-610 Membranes Prepared by the Immersion-Precipitation Process: Competition between Crystallization and Liquid-Liquid Phase Separation”, Polymer, 40, 5011 (1999).
24. L.P. Cheng, T.H. Young, L. Fang, and J.J. Gau, “Formation of Particulate Microporous Poly(vinylidene fluoride) Membranes by Isothermal Immersion Precipitation from the 1-Octanol / Dimethylformamide / Poly(Vinylidene Fluoride) System”, Polymer, 40, 2395 (1999).
25. L.P. Cheng, T.H. Young, W.M. You, “Formation of Crystalline EVAL Membranes by Controlled Mass Transfer Process in Water-DMSO-EVAL Copolymer Systems”, J. Membrane Sci., 145, 77 (1998).
26. F.C. Lin, D.M. Wang, and J.Y. Lai, ”Asymmetric TPX Membranes with High Gas Flux”, J. Membrane Sci., 110, 25 (1996).
27. C. Stropnik, V. Musil, and M. Brumen, “Polymeric Membrane Formation by Wet-Phase Separation; Turbidity and Shrinkage Phenomena as Evidence for the Elementary Processes”, Polymer, 41, 9227 (2000).
28. H. Kusanagi, M. Takase, Y. Chatani, and H. Tadokoro, “Crystal Structure of Isotactic Poly(4-Methyl-1-Pentene)”, J. Polym. Sci., Polym. Phys. Ed., 16, 131 (1978).
29. F.C. Frank, A. Keller, and A. O’Connor, “Observation on Single Crystals of an Isotactic Polyolefin: Morphology and Chain Packing in Poly-4-Methyl-Pentene-1”, Philos. Mag., 4, 200 (1959).
30. U.W. Gedde, Polymer Physics, Chapman & Hall, London, (1995).
31. J.Y. Lai, G.J. Wu, and S.S. Shyu, “TPX/Siloxane Blend Membrane for Oxygen Enrichment, J. Appl. Polym. Sci., 34, 559 (1987).
32. J.Y. Lai, C.Y. Shih, and F.C. Lin, “Plasma Deposition of Vinyl Monomers onto Poly(4-Methyl-1-Pentene)/Poly(Dimethyl Siloxane) Blend Membrane for Oxygen Enrichment from Air”, Polym. J., 26, 665 (1994).
33. C.Y. Shih, K.R. Lee, and J.Y. Lai, “Co60 ã-Ray Irradiation Modified Poly(4-Methyl-1-Pentene) Membrane for Oxygenator”, Eur. Polym. J., 30, 629 (1994).
34. J. Y. Lai, J.J. Shieh, and S.S. Shyu, “MMA/TPX Homograft Membrane for Oxygen Enrichment”, J. Appl. Polym. Sci., 37, 2907 (1989).
35. J. E. Mark, Polymer Data Handbook, Oxford University Press, New York (1999).
36. 范啟明譯,J.A. Brydson 著,“塑膠材料”,大中國出版社,中華民國七十八年。
37. T. Tanigami, H. Suzuki, K. Yamaura, and S. Matsuzawa, “Gelation and Crystallization of Poly (4-methyl-1-pentene) in Cyclohexane Solution”, Macromolecules, 18, 2595, (1985).
38. P. Zoller, H.W. Starkweather, JR., and G.A. Jones, “The Heat of Fusion of Poly (4-methyl pentene-1)”, J. polym. sci., B. Polym. phys., 24, 1451 (1986).
39. R. Matz, “The Structure of Cellulose Acetate Membrane I. The Development of Porous Structures in Anisotropic Membranes”, Desalination, 10, 1 (1972).
40. M.A. Frommer and R.M. Messalem, “Mechanism of Membrane Formation. VI. Convective Flows and Large Void Formation During Membrane Precipitation”, Ind. Eng. Chem. Prod. Res. Develop., 12, 328, (1973).
41. L. Broens, F.W. Altena, and C.A. Smolders, “Asymmetric Membrane Structures as a Result of Phase Separation Phenomena”, Desalintion, 32, 33 (1980).
42. C.A. Smolders, A.J. Reuvers, R.M. Boom, and I.M. Wienk, “Microstructures in Phase-inversion Membranes. Part 1: Formation of Macrovoids”, J. Membr. Sci., 73, 259 (1992).
43. L. Zeman and T. Fraser, “Formation of Air-cast Cellulose Acetate Membranes. Part I. Study of Macrovoid Formation”, J. Membr. Sci., 84, 93 (1993).
44. F.G. Paulsen, S.S. Shojaie, and W.B. Krantz, “Effect of Evaporation Step on Macrovoid Formation in Wet-cast Polymeric Membranes”, J. Membr. Sci., 91, 265 (1994).
45. Y. Termonia, “Fundamentals of Polymer Coagulation”, J. Polym. Sci.: Polym. Phys. Ed., 33, 279 (1995).
46. Y. Termonia, “Molecular Modeling of Phase-inversion Membranes: Effect of Additives in the Coagulant”, J. Membr. Sci., 104, 173 (1995).
47. F.C. Lin, D.M. Wang, C.L. Lai, and J. Y. Lai, “Effect of Surfactants on the Structure of PMMA Membranes”, J. Membr. Sci., 123, 281 (1997).
48. J. Win, Y.S. Kang, H.C. Park, and U.Y. Kim, “Light Scattering and Membrane Formation Studies on Polysulfone Solutions in NMP and in Mixed Solvents of NMP and Ethylacetate”, J. Membr. Sci., 145, 45 (1998).
49. T.H. Young, D.M. Wang, C.C. Hsieh, and L.W. Chen, “The Effect of Second Phase Inversion on Microstructure in Phase Inversion EVAL Membrane”, J. Membr. Sci., 146, 169 (1998).
50. C. DeRosa, F. Auriemma, A. Borriello and P. Corradini, “Up-Down Disorder in the Crystal Structure of Form Ⅲ of Isotatic Poly(4-Methyl-1-Pentene)”, Polymer, 36 (25), 4723 (1995).
51. I. Pinnau, and W.J. Koros, “A Qualitative Skin Layer Formation Mechanism for Membranes Made by Dry/Wet Phase Inversion”, J. polym. sci., B. Polym. phys., 31, 419 (1993).
52. J.Y. Lai, F.C. Lin, T.T. Wu and D.M. Wang, “On the Formation of Macrovoids in PMMA membranes”, J. Membr. Sci., 155, 31 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔