(3.238.186.43) 您好!臺灣時間:2021/03/01 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧厚德
論文名稱:薄層槽內液晶注入流動與殘留氣體吸收效應研究
論文名稱(外文):The Filling Flow of Liquid Crystal and the Residual-Gas Absorption Effect in a Thin-Layer LC Cell
指導教授:顏溪成顏溪成引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:167
中文關鍵詞:薄層流動氣體吸收液晶顯示器注入製程
外文關鍵詞:Hele-ShawLCD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
液晶面板的製造過程中,液晶之注入為一簡單但費時之過程,且注入時間隨著面板尺寸的增加而增長,在量化生產中,注入時間將影響產能之大小。而我們所感興趣的,在於液晶於極薄平板間隙中之流動行為,並希望藉由了解其流態來預測大尺寸液晶面板的灌注時間,以判斷此種製程之可行性,以及得到最佳之注入條件。
我們主要以Hele-Shaw之擬二維薄層流動來討論液晶於平板間隙之移動邊界流動,由於此流動視障礙物邊界為可滑動,因此若我們使注入端之開口與邊等寬,即可以一維之模式處理注入問題。在一維之流動中,我們可導出一十分簡潔的關係式,包含注入時間與面板高度、兩基板間距、液晶黏度(h2)、自由界面處之表面張力以及內外壓力差之關係,具有物理意義上的參考價值。另外我們討論液晶於填充末期由於內部壓力劇烈改變而對流動造成之影響,此情況在注入前真空度不佳或在大尺寸面板之注入時較為明顯,我們同時考慮液晶對內部殘存氣體之吸收情形,並確定上升中自由液面下的質傳情形可視為一維之向下擴散,因此我們可以數值方法在一維流動之初值問題中加入一維質傳方程式合併求解,得到在注入前系統壓力為10-4atm時,填充時間僅較完全真空之填充時間高出3.7%,但在10-3atm時則高出51.6%。另外我們亦討論動態接觸角對毛細現象之影響,發現在一般注入的流動速度下,動態接觸角會趨近於其最大靜態接觸角。
在二維流動中我們針對注入開口之大小以及位置對流動以及填充時間之影響作一討論,發現當注入邊開口大小由全開縮為50%時,填充時間僅不到20%之變化,但當縮小至10%時則時間變化高達60%~100%。注入口若為兩個時,則發現其各位於半邊之中央處時有最短之注入時間,且開口於面板長邊較開口於短邊所需之填充時間為短。
論文之最後以基本之液晶連續理論推導液晶之預傾角大小與流動之關係以及在90°TN液晶槽中流動方向與黏度之關係,得到在小預傾角之液晶槽中其薄層流動行為十分接近基於牛頓流體之Hele-Shaw flow,而在90°TN液晶槽中當流動方向與上下配向皆成45°時有最低黏滯係數。

In the process of LCD fabrication, the filling of liquid crystal is a simple but time-consuming step. Filling time may be even longer with lager size of LCD panel. However, the filling time somewhat determines the manufacturing efficiency. What we are interested here is about the flow pattern of liquid crystal in a very thin gap between two large parallel plates. Also we hope to predict the filling time of larger LCD panels in order to ascertain the practicability of filling process in the future, and to obtain the optimized filling conditions.
First we regard it as a Hele-Shaw flow which is pseudo-two-dimensional flow to deal with the moving boundary flow of liquid crystal in the parallel capillary gap. Here we may deal with the filling flow by one-dimensional mode by letting the opening as wide as the injection side of the panel. From one-dimensional analysis, we derived a simple equation that concerns the filling time, filling height, the gap width, the viscosity of liquid crystal, the surface tension at free surface and the pressure difference between inside and outside. Further, we discussed the effect due to the inner pressure variation to the flow in the terminal filling process, which is more obvious for big size panel or poor vacuum level before injection begins. In the mean while, we considered the effect that the residual inner gas being absorbed by liquid crystal at surface. By analyzing the mass transfer it can be treated as one-dimensional down the moving surface, we could combine the one —dimensional mass transfer equation with the initial value problem of one-dimensional flow and solved by numerical methods. We got the result that when the initial inner pressure is about 10-4atm, the injection time is only 3.7% higher than which is set to be zero, but when the initial inner pressure is 10-3atm, the injection time reaches 51.6% higher. Moreover, we also discussed the influence of dynamic contact angle to the capillary effect and found that the dynamic contact angle approaches the maximum static contact angle in the normal filling velocity of liquid crystal filling.
In two-dimensional analysis, we focused on the effect of the scale and positions of injection opening to the flow pattern and the filling time. As the width of opening reduced to 50% of the width that is totally opened, the filling time arise less than 20%, but as which is reduced into 10%, the filling time arises up to 60%~100%. When there are two injection openings, the least injection time comes to when both openings are located at the center of half the injection side. In addition, the injection time of the openings located at long side is shorter than which located at short side.
At last, we derived the relationship between pretilt angle and the flow behavior, and the relationship between the flow directions and the apparent viscosity. It is concluded that when the pretilt angle is smaller, the thin-layer flow behaves more like the Hele-Shaw flow that is based on Newtonian fluid. At 90° TN LCD cell, the smallest viscosity may be obtained when the flow direction formss 45° with both the top and the bottom substrates.

中文摘要
英文摘要
目錄
圖表目錄
第一章 緒論
1.1 前言
1.2 液晶簡介
1.3 液晶之基本物理參數
1.4 液晶顯示器原理與製程
1.5 論文架構
第二章 文獻回顧
2.1 牛頓與非牛頓之薄層流動
2.2 液晶流體之理論發展
第三章 流體流動之基本方程式-牛頓流體與異向性流動
3.1 引言
3.2 平板間薄層之流動之基本方程式
(A)狹縫間之Navier-Stokes方程式
(B) 在薄層中的二維slow viscous flow
(C) Hele-Shaw流動
3.3 界面現象
(A) 表面張力與接觸角
(B) 潤濕現象
(C) 動態接觸角
3.4 氣體之吸收與質傳
3.5 向列型(Nematic)液晶之連續理論(Continuum theory)
(A) 奧辛-法蘭克(Oseen-Frank)方程式
(B) 電、磁力位能密度
(C) 黏滯係數(Coefficients of viscosity)
第四章 液晶面板之充填模擬
4.1 液晶之灌注製程
4.2 一維分析
(A) 內部壓力固定之一維解析
(B) 毛細效應
(C) 內部理想氣體效應
(D) 氣體吸收效應(不考慮質傳)
(E) 質傳控制之氣體吸收
(F) 一維數值模擬
4.3 二維移動邊界模擬
(A) 自由邊界之邊界條件
(B) 直角座標之移動邊界分析
(C) 橢圓柱座標之移動邊界分析
(D) 二維數值模擬
4.4 自由液面之二維質傳探討
4.5 向列型液晶之平行平板間流動
4.6 總結
第五章 液晶黏性係數與表面張力係數之量測
5.1 液晶異向黏滯係數之測量
5.2 表面張力與接觸角量測
第六章 總結與展望
符號說明
參考文獻

Ablett, R.,Phil. Mag., 46 (1923), 244.
Bard, A.J. and L.R. Faulkner, Electrochemical Methods-Fundamentals and Applications, 2nd ed., WILEY (2001).
Berg, J.C., Wettability, Dekker (1993).
Blinov, L.M., V.G. Chingrinov, Electrooptical Effects in Liquid Crystal Materials, Springer (1994), New York.
Brett, L. and Van Horn, Rheol. Acta., 39 (2000), 294.
Burley, R. and B.S. Kennedy, Chem. Eng. Sci., 31 (1976), 901.
Cain, J.B., D.W. Francis, R.D. Venter, and A.W. Newman, J. Coll. Inter. Sci., 94 (1983), 123.
Calderer, M.C., Physica D, 98 (1996), 201.
Chandrasekhar, S., Liquid Crystals, Cambridge (1977).
Chen, S.B. and D.L. Koch, J. Non-Newtonian Fluid Mech., 69 (1997), 273.
Collings, Peter J., Introduction to Liquid Crystals Chemistry and Physics, (1997).
Cussler, E.L., Diffusion - Mass Transfer in Fluid Systems, 2nd ed, Cambridge (1997).
De Gennes, P.G., Rev. Mod. Phys., 57 (1985), 827.
De Gennes, P.G., The Physics of Liquid Crystals, 2nd ed, Oxford (1993).
Demus, D., J. Goodby, G.W. Gray, H.-W. Spiess, V. Vill, Handbook of Liquid Crystals, Vol. 2A, WILEY-VCH (1998).
Demus, D., J. Goodby, G.W. Gray, H.-W. Spiess, V. Vill, Physical Properties of Liquid Crystals, WILEY-VCH (1999).
Denniston, C., Computational and Theoretical Polymer Science, 11 (2001), 389.
Drikis, I. and A. Cebers, Journal of Magnetism and Magnetic Materials, 201(1999), 339.
Ericksen, J.L., Advances in liquid crystals, 2(1976), 233.
Ericksen, J.L., Arch. Rotational Mech. Anal, 4 (1960), 231.
Ericksen, J.L., Arch. Rotational Mech. Anal, 113 (1991), 97.
Ericksen, J.L., Mol. Cryst. Liq. Cryst., 7 (1969), 153.
Ericksen, J.L., Phys. Fluids, 9 (1966), 1205.
Ericksen, J.L., Theory and applications of liquid crystals, (1987).
Ericksen, J.L., Trans. Soc. Rheol., 5 (1961), 23.
Fast, P., Physics of Fluids, 13(2001), 1191.
Fogg, P.G.T. and W. Gerrard, Solubility of Gases in Liquids, Wiley, chap.13 (1990).
Frank, F.C., Discuss. Faraday Soc., 25 (1958), 19.
Gahwiller, Ch., Mol. Cryst. Liq. Cryst., 20 (1973), 301.
Graf, H,-H. and H. Kneppe, Mol. Phys., 77 (1992), 521.
Griebel, M., T. Dornseifer and T. Neunhoeffer, Numerical Simulation in Fluid Dynamics, SIAM (1998).
Hele Shaw, H.J.S., Trans. Instr. Nav. Archit., 46 (1898), 21.
Helfrich, W., J. Chem. Phys., 51 (1969), 4092.
Hoffman, R.L., J. Coll. Onter. Sci., 50 (1975), 228.
Hou, T.Y., Z. Li, S. Osher and H. Zhao, Journal of Computational Physics, 134 (1997), 236.
Inverarity, G., Brit. Polym. J., 1 (1969), 254.
Johnson, J.B., Jr., R.H. Dettre, and D.A. Brandreth, J. Coll. Inter. Sci., 62 (1977), 205.
King, C.J., L. Hsueh and K. Mao, J. Chem. Eng. Data, 10 (1965), 348.
Kondic, L., P. Palffy-Muhorary and M.J. Shelley, Phys. Rev. E, 54(1996), R4536.
Krekhov, A.P., T. Bőrzsőnyi, P. Tơth, Á. Buka, and L. Kramer, Physics Reports, 337 (2000), 171.
Kuzuu, N., M. Doi, J. Phys. Soc. Jpn., 52 (1983), 3486.
Kuzuu, N., M. Doi, J. Phys. Soc. Jpn., 53 (1984), 1031.
Landau, L., Course of Theoretical Physics/6. Fluid Mechanics, Oxford (1959).
Leslie, F.M., Arch. Rotational Mech. Anal, 28 (1968), 265.
Leslie, F.M., Quart. J. Mech. Appl. Math., 19 (1966), 357.
Lloyd, I. Osipow, Surface Chemistry — Theory and Industrial Applications, Krieger, (1972).
Marrucci, G., Mol. Cryst. Liq. Cryst., 72 (1981), 153.
Marrucci, G., P.L. Maffettone, Am. Chem. Soc., 22 (1989), 4076.
Miesowicz, M., Bull. Acad. Polon. Sci. Lett., Ser. A, Sci. Math., (1936), 248.
Miesowicz, M., Bull. Intern. Acad. Polon. Ser. A, (1936), 228.
Miranda, J.A. and M. Widom, Physica D, 120(1998), 315.
Morrow, N.R. and M.D. Nguyen, J. Coll. Inter. Sci., 89 (1982), 523.
Oseen, C.W., Ark. Mat. Astron. Fys., 19A (1925), 1.
Oseen, C.W., Trans. Faraday Soc., 29(1933), 883.
Rienäcker, G., Physica A, 267 (1999), 294.
Schlichting, H., Boundary Layer Theory, 2nd ed, McGraw-Hill(1979).
Shakhova, S.F., Yu.P. Zubchenko and L.K. Kaplan, Khim. Prom., 49 (1973), 108.
Tanner, L.H., J. Phys. Dokl., 23(1979), 1473.
Voinov, O.V., Fluid. Dyn., 11(1976), 714.
Voinov, O.V., Int. J. Multiphase Flow, 21 (1995), 801.
Voinov, O.V., Journal of Colloid and Interface Science, 226 (2000), 29.
Yeh, Pochi, Optics of liquid crystal displays, (1999).
Zocher, H., Phys. Z, 28 (1927), 790.
Zocher, H., Trans. Faraday Soc., 29 (1933), 945.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔