(3.238.7.202) 您好!臺灣時間:2021/03/04 02:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾琮瑋
論文名稱:銅電化學沉積電解液添加劑效應與旋轉流動電鍍槽之研究
論文名稱(外文):The Study of Additive Effects for Copper Electrochemical Deposition and Hydrodynamic Electroplating Test Cell
指導教授:顏溪成顏溪成引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:171
中文關鍵詞:電化學沉積添加劑電鍍槽明膠
外文關鍵詞:Electrochemical DepositionAdditiveElectroplating Test CellGelatin
相關次數:
  • 被引用被引用:2
  • 點閱點閱:834
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於添加劑影響銅電沉積程序與沉積結果之重要性不可忽視,添加劑已成為電解液中微量之但關鍵之組成。為求適當運用添加劑之效能,必須對其進行深度研究與認識,並已適當方式加以分析及管理。本研究分為二部分,第一部份探討硫酸銅電解液數種重要添加劑之作用,包括明膠(gelatin)、氯離子、thiourea、methionine以及數種添加劑之共同作用。研究中主要以電化學分析方法,與表面型態分析並重,對添加劑影響銅電沉積程序與沉積結果之現象予以觀察,並究其成因。第二部分為電鍍試驗槽之研究,電鍍試驗槽被工業界用於管理及控制電解液組成,本論文研究之改良式旋轉流動電鍍試驗槽,(M-HETC,modified-
hydrodynamic electroplating test cell)為一具有廣泛電流密度與良好質傳條件之電鍍試驗槽。
第一部份實驗結果顯示,明膠可吸附於陰極表面,與明膠使用之濃度、分子量、明膠來源、操作溫度相關。明膠之吸附影響銅電沉積反應機制動力參數,明膠於電解液中發生水解降解(degradation)現象發生迅速,但明膠降解後產物不影響銅電沉積反應機制。研究中歸納出明膠作用老化(aging)成因,此乃因其藉由其含有之胺基酸之一-methionine吸附於陰極表面,水解降解使某些明膠分子失去methionine,造成其失去吸附能力與作用。氯離子於不同使用濃度下,將產生相差甚遠之沉積型態。Thiourea於高濃度下產生大型晶粒。Methionine 於使用1ppm濃度時可使晶粒細化,其餘濃度作用則大不相同。多種添加劑之使用可以產生多樣化沉積結果,明膠、氯離子、thiourea共同使用可取得晶粒相當細緻之沉積層。高溫(60℃)下沉積晶粒變大,明膠與氯離子於高溫下作用與25℃類似,但二種添加劑於60℃下效應均弱於25℃。明膠9ppm與methionine 1ppm均小幅提昇銅沉積層硬度,thiourea 3ppm有大幅增加沉積層硬度之作用,氯離子 100ppm則降低沉積層硬度,60℃下沉積層硬度小於25℃沉積層,60℃下明膠與氯離子影響沉積層硬度相似趨勢於25℃下之情形。
第二部分由理論與模擬結果,M-HETC被證實有寬廣電流密度分佈。由流場模擬結果,M-HETC具備提供一個有效攪拌流場之條件,其流態為一主渦環與二個次渦環,旋轉圓柱僅於水平方向旋轉,但流體受底面剪應力之影響,亦產生鉛直方向的速度。於質傳之模擬研究部分,在各轉速下,距旋轉圓柱7cm處之質傳係數將大於距旋轉圓柱5cm處,原因為受主渦環流體邊界分離流速與流向大幅改變造成。沉積厚度量測實驗結果顯示,若操作條件為銅離子濃度較高、轉速較快、施加電壓(電流)較小的情形下,鍍層厚度較接近初級分佈情形。此時沉積結果厚度分佈明確,可作為有效的電鍍試驗工具。以M-HETC進行電鍍試驗分析添加劑之作用,添加劑極化(或去極化)作用將影響電流分佈,一併影響沉積厚度分佈,並顯示於沉積外觀之結果,使吾人偵知添加劑效用。由以上結論可說明M-HETC可作為電鍍試驗之有效工具。
Owing to the importance of additives effects in copper electrochemical deposition process and results, additives became the key component of electrolyte. In order to make use of additives properly, the thorough study is necessary. And to control and analysis additives composition in electrolyte properly is essential. The thesis is divided into two
part. First part of the study investigates several important additives in CuSO4/H2SO4 electrolyte includes: gelatin, chloride ion, thiourea and methionine. This research is mainly carried out by electrochemical analysis techniques and morphology analysis, trying to find out the effects of additives in copper electrochemical deposition process and also to figure out the reason. The other part is the study of electroplating test cell, which is used for controlling electrolyte composition. In this thesis, what we research is an electroplating test cell provided with a wide range of current distribution and well controlled mass transfer conditions named M-HETC (modified-hydrodynamic electroplating test cell).
From experimental results, the adsorption of gelatin is associated with its concentration, molecular weight, species and operating temperature. The adsorption of gelatin influences the mechanism kinetics parameters of copper electrochemical deposition. Gelatin is degrading quickly in electrolyte, and the residues do not influence the mechanism of copper electrochemical deposition. In this study, we conclude that the adsorption of gelatin rely on methionine — one of gelatin’s amino acid composition. The degrading of gelatin makes a part of it in lack of methionine, and gelatins lose the ability of adsorption, which causes the aging of gelatin in electrolyte. The existences of chloride ion change the mechanism of copper electrochemical deposition. It influence the morphology of copper deposited dissimilar in different concentration. Thiourea acts as a brightening agent rather than a leveling agent, and grain size increase within high concentration. Methionine decrease grain sizes under 1ppm concentration distinct from effects happen under other concentration. The using of more than one kind additive produces a variety of copper deposit. The all using of gelatin, chloride ion and thiourea decrease grain size obviously. The grain size deposited in 60℃is lager than in 25℃.And the effects of gelatin and chloride ion in 25℃ and 60℃ are somewhat similar . Gelatin 9ppm and methionine 1ppm ascend the hardness of copper deposits a little; thiourea ascends the hardness of copper deposits substantially. Chloride ion 100ppm descends the hardness of copper deposited layer. The influence of gelatin or chloride towards hardness in 60℃ is similar to that in 25℃.
From theoretical and simulative results, M-HETC provided with a wide range of current density distribution. From the simulative results of flow field, M-HETC does provide a valid well agitating flow field. The flow field is divided into a main vortex and two sub vortices. The rotating cylinder spin in horizontal plane, but the fluid influenced by the shear stress from the bottom face will be provided with a perpendicular velocity and fluid will flow in a 3 dimensional way, which may aid the stirring outcome. Within mass transfer simulation results, the mass transfer coefficient will ascend in vertical position. The mass transfer coefficient of position from cylinder 7cm is greater than mass transfer coefficient of position from cylinder 5cm on account of the fluid of main vortex flows in distinct direction. From the outcome of deposit thickness measurement, if test deposition operating under conditions of high electrolyte concentration, high rotating speed, low applied voltage or current, the experimental current density distribution will close to primary current density distribution. Under the operating conditions above, M-HETC serves as a good electroplating test cell. To proceed electroplating tests by use of M-HETC, we find additives polarization (or depolarization) will affect current distribution and deposits thickness distribution. This phenomenon will reveal at the appearance of deposits and detected by us and helps us figure out the effects of additives. And we conclude that M-HETC is an effective instrument for electroplating tests.
摘要
目錄
圖表目錄
第一章 緒論
1.1 銅電沉積之應用
1.2 銅金屬特性、銅電沉積環境及添加劑
1.3 沉積層粗糙度與添加劑之作用
1.4 研究動機與內容
第二章 文獻回顧
2.1 文獻研究方法
2.2 銅電沉積基本研究
2.3 重點類型添加劑之研究
第三章 理論分析與技術
3.1 旋轉盤電極系統
3.2 極化曲線(polarization curve)--電位/電流關係
3.3 交流阻抗分析
第四章 實驗設備與方法
4.1 實驗理論及步驟
4.2 設備、儀器、藥品及耗材
第五章 銅電沉積添加劑效應實驗結果與討論
5.1 分析方法討論及電化學分析測試條件
5.2 明膠(gelatin)型添加劑之效應分析
5.3 氯離子效應分析
5.4 Thiourea效應分析
5.5 Methionine效應分析
5.6 二種添加劑以上之共同效應
5.7 60℃下明膠之效應分析與氯離子之效應
5.8 添加劑的使用對於銅電沉積層硬度之影響
第六章 改良型旋轉流動電鍍試驗槽
6.1 電鍍試驗
6.2 改良型旋轉流動電鍍試驗槽基本原理
6.3 文獻回顧
6.4 模擬與實驗方法
6.5 模擬與實驗結果與討論
第七章 結論
符號說明
參考文獻
附錄
Andersen, T. N., R. D. Budd and R. W. Strachan, Metallurgical Transactions B, 7B, 334(1976).
Bard, A. J. and L. R. Faulkner, “Electrochemical methods” 2th Ed., John Wiley & Sons, Inc., New York (2001).
Bharucha, N. R., Z. Zavorsky and R. L. Leroy, Metallurgical Transactions B, 7B, 509(1978).
Blackburn, J. M., D. P. Long, A. Cabanas and J. J. Watkins, Science, 294, 141(2001).
Callister, Jr. W. D., “Material Science and Engineering”, 4th Ed., John Wiley & Sons, Inc., New York (1997).
Chassaing, E. and R. Wiart, Electrochimica. Acta, 29, 649(1984).
Chia, E. H. and Y. Y. Su, Journal of Metals, Apr., 42(1987).
Chiang, S. K., D. F. DiFranco and D. G. Pucci, Circuit World, 21, 57(1995).
Eliadis, E. D., R. G. Nuzzo, A. A. Gewirth and R. C. Alkire, J. Electrochem. Soc., 144, 96 (1997).
Epelboin, I. and R. Wiart, Electroctrystallization of nickel and cobalt, 118, 1577(1971).
Fabricius, G., and G. Sundholm, J. of Applied electrochemistry, 14, 797(1984).
Farmer, J. C., J. Electrochem. Soc., 132, 2640(1985).
Fox, M.A. and J.K.Whitesell, ‘Organic Chemistry’, Jones and Bartlett Publishers, Boston (1994).
Gorbunova, K. M. and Z. A. Tkachik, Electrochimica Acta, 16, 191(1971).
Hannaert, P., Ind. Chim. Belge., 32, 223(1967).
Hope, G. A., G. M. Brown, D. P. Schweihsberg, K. Shimizce and K. Kobayashi,
J. Applied Electrochemistry, 25, 890(1995).
Jagush, F. A., R. E. White, and W. E.Ryan, J. Electrochem. Soc., 137,1848 (1990).
Kadija, I., J. A. Abys, V. Chinchankar and H. K. Straschil, Plat. Surf. Finish. 78, 60 (1991).
Kelly, J. J. and A. C. West, J. Electrochem. Soc., 145, 3472(1998).
Kelly, J. J. and A. C. West, J. Electrochem. Soc., 145, 3477(1998).
Kelly, J. J., C. Tian and A. C. West, J. Electrochem. Soc., 146, 2540(1999).
Kirowa-Eisner, E. and E. Gileaddi, J. Electrochem. Soc., 123, 22(1976).
Koura, N., A. Tsutsumi and W. Kunihiro, Plating and Surface Finishing, 77, 58(1990).
Krzewska, S., Electrochimica Acta, 42, 3531(1997).
Lamb, V. A. and D. R. Valentine, AES Research Project, 1289(1965).
Leung T. Y. B., M. Kang, B. F. Corry, and A. A. Gewirth, J. Electrochem. Soc., 147, 3326 (2000).
Lu, P. Y., Plat. Surf. Finish. 78, 62 (1991).
Madore, C., M. Matlosz and D. J. Landolt, Appl. Electrochem., 22,1155 (1992).
Mattson, E. and J. O’M. Bockris, Trans. Faraday Soc., 55, 1568 (1959).
Mendez, S., G. Andreasen, P. Schilardi, M. Figueroa, L. Vazquez, R. C. Salvarezza, and A. J. Arvia, Langmuir, 14, 2515(1998).
Moats, M. S., J. B. Hiskey and D. W. Collins, hydrometallurgy, 56, 255(2000).
Maltlosz, M., C. Creton, C. Clerc, and D. Landolt, J. Electrochem. Soc., 134, 3015(1987).
Newton, B., 1998 IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, 358 (1998).
Pletcher, D. and F. C. Walsh, “Industrial electrochemistry”, 2nd Ed., BLACKIE A & P, London (1990).
Portela, A. L., Journal of Electroanalytical Chemistry , 495, 169(2001).
Reid, J. D. and Allan P. David, J. Electrochem. Soc., 136, 1389(1987).
Roha, D. and U. Landau, J. Electrochem. Soc., 137, 824(1990).
Saban, M. D., J. D. Scott and R. M. Cassidy, Metallurgical Transactions B, 23B, 125(1992).
Skoog, D. A., Donald M. West, F. James Holler, “Fundamentals of Analytical
Chemistry”, 7th Ed., Saunders College Publishing, Fort Worth (1996).
Tobin, A. J. and J. Dusheck, ‘Asking about Life’, Saunders College Publishing, Fort Worth(1998).
Varvara, S., L. Muresan, A. Nicoara, G. Maurin and I. C. Popescu, Materials Chemistry and Physics, 72, 332(2001).
Yen, S.C. and I.M. Lu, ibid. 81, 56 (1994).
Zhou, Z., and T. J. O’Keefe, J. of Applied Electrochemistry, 28, 461(1998).
顏溪成,王金勝,“外加強制對流下旋轉盤及靜態系統之質量輸送”,台大化工所博士學位論文(1992),台北。
顏溪成,楊峻杰,“電解銅箔添加劑之效應研究”,台大化工所碩士學位論文(2000),台北。
顏溪成,蔡承穎,“聚乙二醇與苯并三氮唑等添加劑於銅箔電鍍之效應分析”,台大化工所碩士學位論文(2001),台北。
顏溪成,林毓翔,“新式旋轉流動電鍍試驗槽之質傳及流場研究”,台大化工所碩士學位論文(2000),台北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔