(34.201.11.222) 您好!臺灣時間:2021/02/25 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝明勳
研究生(外文):Ming-Hsun Hsieh
論文名稱:金屬串錯合物的導電性研究
論文名稱(外文):Conductivity of Metal String Complexes
指導教授:彭旭明彭旭明引用關係
指導教授(外文):Shie-Ming Peng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:88
中文關鍵詞:硫醇薄膜金屬串錯合物導電性表面分子元件基質
外文關鍵詞:ALKANETHIOL MONOLAYERSGOLDSILVERSUBSTRATEmolecular devicessurfaceConductivityMetal String Complexes
相關次數:
  • 被引用被引用:2
  • 點閱點閱:199
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在於研究金屬串錯合物[NinL4(NCS)2]和[M3(dpa)4(NCS)2] (M = NiII, CoII, or CrII; n = 3, 5, or 7; L = dpa, tpda, or teptra, where dpa = dipyridylamido anion, tpda = tripyridyldiamido dianion, and teptra = tetrapyridyltriamido trianion)做為導電分子金屬線和分子元件(molecular devices)的潛力。在此,我們利用直鏈烷基硫醇的分子自組薄膜(self-assembled monolayers)作為平面上的基質(matrix)以隔離出金屬串錯合物,在掃描式穿隧顯微鏡(scanning tunneling microscopy,STM)測量下,其呈現隆起的形態。然而,事實上金屬串錯合物比烷基硫醇短,但在此它們並未隱藏在烷基硫醇分子裡面,由此我們可以藉由這些隆起物證明金屬串分子確實比周圍烷基硫醇的導電性來的高。對於長度相似的三核金屬錯合物來說,STM測量呈現出來的高度明顯地與其金屬離子相關。由於這些金屬串分子被包覆著相同的配基,因此它們在高度上明顯的差異顯示出金屬-金屬間的相互作用與分子金屬線導電性間的正相關性。再藉由先前研究的定性分子軌域計算得知導電度增加的趨勢正好與鎳、鈷及鉻錯合物的鍵序(分別為0、0.5和1.5)一致。
此外,我們的直線型多核金屬串錯合物裡的金屬-金屬之間的交互作用可能會因為氧化而改變。由STM的測量顯示出氧化後的[Ni5(μ5-tpda)4(NCS)2]+、[Cr5(μ5-tpda)4(NCS)2]+和[Co5(μ5-tpda)4(NCS)2]+錯合物導電性相較於其中性態已經發生改變。因此,我們可以利用這些錯合物中性和氧化態間導電性的不同使它們成為「分子開關」。
Metal string complexes of [NinL4(NCS)2] and [M3(dpa)4(NCS)2] (M = NiII, CoII, or CrII; n = 3, 5, or 7; L = dpa, tpda, or teptra, where dpa = dipyridylamido anion, tpda = tripyridyldiamido dianion, and teptra = tetrapyridyltriamido trianion) are studied for their potential to function as conductive molecular metal wires. Self-assembled monolayers of n-alkanethiols are employed as a two-dimensional matrix to isolate the metal string complexes, which exhibit as protrusions under the measurements of scanning tunneling microscopy (STM) imaging. The metal string complexes are shorter than the alkanethiolates and thus, instead of being embedded, the protrusions demonstrate that the metal strings are more conductive than the neighboring alkanethiolates. For trinuclear metal complexes with similar length, variation of the STM apparent heights of the protrusions is significantly associated with the metal ions. Because the metal strings are wrapped with identical ligands, the discrepancy in their apparent heights indicates a positive correlation between the metal-metal interactions and the conductivity of the molecular metal wires. The ascending trend of difference in heights is in a good agreement with previous studies of qualitative molecular orbital calculation which suggests that nickel complexes are semi-metal with a slightly filled conduction band and that chromium complexes are likely equivalent to a conducting wire. The trend of increase in conductivity is consistent with their bond orders which are 0, 0.5, and 1.5 for complexes of nickel, cobalt, and chromium, respectively.
The metal-metal interactions in our linear multinuclear metal string complexes might change upon oxidation. The measurements of STM show that the conductivity of [Ni5(μ5-tpda)4(NCS)2]+, [Cr5(μ5-tpda)4(NCS)2]+ and [Co5(μ5-tpda)4(NCS)2]+ is changed as compared to that of their neutral analogues. The difference of conducting between the neutral and oxidized forms allows us to utilize these complexes as “molecular switches”.
第一章 緒論
1-1 分子金屬導線—多核金屬串錯合物之合成
1-2 金屬-金屬鍵結理論
1-2-1 雙核金屬錯合物金屬-金屬間鍵結理論
1-2-2 直線型三核過渡金屬錯合物鍵結理論
1-2-3 直線型五核過渡金屬錯合物鍵結理論
1-2-4 直線型七核過渡金屬錯合物鍵結理論
1-2-5 直線型多核金屬串錯合物在分子元件的應用
1-3 分子導電性之量測
1-4 研究方向
第二章 實驗部分
2-1 試藥與儀器
2-1-1實驗試藥
2-1-2實驗儀器
2-2 樣品製備—多核金屬串之合成
2-2-1 [Ni3(μ3-dpa)4(NCS)2]之合成
2-2-2 [Ni5(μ5-tdpa)4(NCS)2]之合成
2-2-3 [Ni5(μ5-tdpa)4(NCS)2](ClO4)之合成
2-2-3 [Ni7(μ7-teptra)4(NCS)2]之合成
2-2-4 [Co3(μ3-dpa)4(NCS)2]之合成
2-2-5 [Co5(μ5-tdpa)4(NCS)2]之合成
2-2-6 [Co5(μ5-tdpa)4(NCS)2](ClO4)之合成
2-2-6 [Cr3(μ3-dpa)4(NCS)2]之合成
2-2-7 [Cr5(μ5-tdpa)4(NCS)2]之合成
2-2-9 [Cr5(μ5-tdpa)4(NCS)2](ClO4)之合成
2-3 導電性的測量
2-3-1 金(111)表面之製備
2-3-2 低電位沉積
2-3-3 硫醇分子自組薄膜和分子導線的吸附
2-3-4 掃描式穿隧顯微鏡
第三章 結果與討論
3-1 Au(111)表面
3-2 分子自組薄膜
3-3低電位沉積
3-4 直線型多核金屬串錯合物之導電度
3-4-1 [Ni3(μ3-dpa)4(NCS)2]導電度
3-4-2 [Ni5(μ5-tpda)4(NCS)2]導電度
3-4-3 [Ni7(μ7-teptra)4(NCS)2]導電度
3-4-4 [Co3(μ3-dpa)4(NCS)2]導電度
3-4-5 [Cr3(μ3-dpa)4(NCS)2]導電度
3-5氧化之直線型金屬串錯合物的導電度
3-5-1氧化後的五核鎳金屬串錯合物之結構及導電性
3-5-2氧化後的五核鈷金屬串錯合物之結構及導電性
3-5-3氧化後的五核鉻金屬串錯合物之結構及導電性
3-6導電性之比較
3-6-1 直型多核鎳金屬串錯合物導電性之比較
3-6-2直線型三核金屬串錯合物導電性之比較
3-6-3 氧化和中性金屬串錯合物導電性之比較
第四章 總結
4-1 結論
4-2 未來展望
參考文獻
1. G. Moore, IEDM Tech. Dig. 1975, p11 .
2. J. M. Tour, Acc. Chem. Res. 2000, 33, 791.
3. M. A. Reed and J. M. Tour, Sci. Am. 2000, 282, 86.
4. J. M. Tour, Acc. Chem. Res. 2000, 33, 791.
5. C. S. Gibson and W. Mm. Colles, J. Chem. Soc. 1931, 2407.
6. L. P. Wu, P. Field, T. Morrissey, C. Murphy, P. Nogle and B. Hathaway, J. Chem. Soc. Dalton Trans. 1990, 3835.
7. G. J. Pyrka, M. E-Mekki and A. A Pinkerton, J. Chem. Soc. Chem. Chemmun., 1991, 84.
8. (a)許進財,八十四學年度國立台灣大學博士論文,1996。(b) J. T. Sheu, C. C. Lin, I. Chao, C. C. Wang and S. M. Peng, Chem. Commun. 1996, 315.
9. (a)楊恩澤,八十一學年度國立台灣大學碩士論文,1993。(b) E. C. Yang, M. C. Cheng, M. S. Tsai and S. M. Peng, J. Chem. Soc. Chem. Commun. 1994, 2377. (c) F. A. Cotton, L. M. Daniel and G. T. Jordan IV, J. Chem. Soc. Chem. Commun. 1997, 421 (d) F. A. Cotton, L. M. Daniel, G. T. Jordan, IV and C. A. Murillo, J. Am. Chem. Soc. 1997, 119, 10377.
10. S. Aduldecha and B. Hathaway, J. Chem. Soc. Dalton Trans. 1991, 993.
11. 林正城,八十四學年度國立台灣大學博士論文,1996。
12. (a)李佳宗,八十七學年度國立台灣大學碩士論文,1999。(b) F. A. Cotton, L. M. Daniel, C. A. Murillo and I . Pascual, J. Am. Chem. Soc. 1997, 119. 10233. (c) F. A. Cotton, L. M. Daniels, C. A. Murillo and X. Wang, Chem. Commun. 1998, 39.
13. 謝勝傑,八十四學年度國立台灣大學博士論文,1996。
14. (a)駱韋仲,八十五學年度國立台灣大學博士論文。1997。(b) C. C. Wang, W. C. Lo, G. H. Lee, J. M. Chen and S. M. Peng, Inorg. Chem. 1998, 37, 4059.
15. 周金城,八十五學年度國立台灣大學碩士論文,1997。
16. S. J. Shieh, C. C. Chou, G.. H. Lee, C. C. Wang and S. M. Peng, Angew. Chem. Int. Ed. Engl. 1997, 36, 57.
17. (a) 楊明華,八十六學年度國立台灣大學碩士論文,1998。(b) M. H. Yang, T. W. Lin, C. C. Chou, H. C. Lee, H. C. Chang, G. H. Lee, M. K. Leung and S. M. Peng, Chem Commun. 1997, 2279.
18. (a) 賴旭洋,八十七學年度國立台灣大學碩士論文,1999。(b) S. Y. Lai, C. C. Wang, Y. H. Chen, C. C. Lee, Y. H. Liu and S. M. Peng, J. Am. Chem. Soc. 1999, 121, 250. (c) S. Y. Lai, C. C. Wang, Y. H. Chen, C. C. Lee, Y. H. Liu and S. M. Peng, J. Chin. Chem. Soc. 1999, 46, 477.
19. (a) 陳裕華,八十九學年度國立台灣大學博士論文,2001。(b) Y. H. Chen, C. C. Lee, C. C. Wang, G. H. Lee, S. Y. Lai, F. Y. Li, H. Y. Mou and S. M. Peng, Chem. Commun. 1999, 1667.
20. (a) D. A. Bailey, A. L. Balch, L. A. Fossett, M. M. Olmstead and P. E. Jr. Reedy, Inorg. Chem. 1987, 26, 2413. (b) A. L. Balch, In Progess in Inorganic Chemistry; S. J. Ed, 1994, Vol 42, p239 and references cited therein.
21. (a) Lj. Manojlovic-Muir, K. W. Muir, B. R. Lloyd and R. J. Puddephatt, J. Chem. Soc. Chem. Commun. 1983, 1336. (b) B. R. Lloyd and R. J. Puddephatt, Inorg. Chim. Acta. 1984, 90, L77. (c) G. Ferguson, B. R. Lloyd and R. J. Puddephatt, Organmetallics 1986, 5, 344. (d) R. J. Puddephatt, L. Manojlovic-Muir and k. W. Muir, Polyhedron 1990, 9, 2767 and references cited therein.
22. (a) T. Tanase, Y. Kudo, M. Ohno, K. Kobayashi and Y. Yamamoto, Nature 1990, 344, 526. (b) Y. Yamanoto and H. Yamazaki, Organometallics 1993, 12, 933. (c) T. Tanase, H. Ukaji, Y. Hudo, M. Ohno, K. Kobayashi and Y. Yamamoto, Organometallics 1994, 13, 1301. (d) T. Tanase, H. Ukaji, T. Igoshi and Y. Yamamoto, Inorg. Chem. 1996, 35, 4414.
23. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, John Wiely & Sons, 5th Ed. 1988, Chapter 23.
24. H. C. Chang, J. T. Li, C. C. Wang, T. W. Lin, H. C. Lee, G. H. Lee and S. M. Peng. Eur. J. Inorg. Chem. 1999, 1243.
25. R. M. Metzger, Acc. Chem. Res. 1999, 32, 950.
26. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker. Science 2001, 293, 76.
27. C. B. Gorman, R. L. Carroll and R. R. Fuierer, Langmuir 2001.17, 6923.
28. M. Dorogi, J. Gomez, R. Osifchin and R. P. A. Andres, Phys. Rev. B 1995, 52, 9071.
29. L. A. Bumm, J. J. Arnold, M. T. Cygan, T. D. Dunbar, T. P. Burgin, L. Jones, II, D. L. Allara, J. M. Tour and P. S.Weiss, Science 1996, 271, 1705.
30. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, J. M. Tour, Science 1997, 278, 252.
31. S. M. Peng, C. C. Wang, Y. L. Jang, Y. H. Chen, F. Y. Li, C. Y. Mou and M. K. Leung, J. Mag. Mag. Mater. 2000, 209, 80.
32. T. D. Dunbar, M. T. Cygan, L. A. Bumm, G. S. McCarty, T. P. Burgin, W. A. Reinerth, L. Jones, II, J. J. Jackiw, J. M. Tour, P. S. Weiss and D. L. Allara, J. Phys. Chem. B 2000, 104, 4880.
33. G. Leatherman, E. N. Durantini, D. Gust, T. A. Moore, A. L. Moore, S. Stone, Z. Zhou, P. Rez, Y. Z. Liu and S. M. Lindsay, J. Phys. Chem. B 1999, 103, 4006.
34. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin and J. M. Tour, Science 1997, 278, 252.
35. M. H. Hsieh and C.-h. Chen, Langmuir 2000, 16, 1729.
36. A. Ulman, An Introduction to Ultrathin Organic Surface Films, Academic, San Diego, 1991.
37. G. E. Poirier and E. D. Pylant, Science 1996, 272, 1145.
38. G. E. Poirier, Chem. Rev. 1997, 97, 1117.
39. E. Delamarche, B. Michel, Ch. Gerber, D. Anselmetti, H.-J. Guentherodt, H. Wolf and H. Ringsdorf, Langmuir 1994, 10, 2869.
40. J. A. M. Sondag-Huethorst, C. Schonenberger and L. G. J. Fokkink, J. Phys. Chem. 1994, 98, 6826.
41. G. K. Jennings and P. E. Laibinis, J. Am. Chem. Soc. 1997, 119, 5208.
42. D. M. Kolb, in Advances in Electrochemistry and Electrochemical Engineering, H. Gerischer, C. W. Tobias, Eds. (Wiley-Interscience, New York, 1978), vol. 11, p125.
43. G. K. Jennings and P. E. Laibinis, Langmuir 1996, 12, 6173.
44. M. Nishizawa, T. Sunagawa and H. Yoneyama, Langmuir 1997, 13, 5215.
45. D. Oyamatsu, M. Nishizawa, S. Kuwabata and H. Yoneyama, Langmuir 1998, 14, 3298.
46. C.-h. Chen, S. M. Vesecky and A. A. Gewirth, J. Am. Chem. Soc. 1992, 114, 451.
47. M. D. Porter, T. B. Bright, D. L. Allara and C. E. D. Chidsey, J. Am. Chem. Soc. 1987, 109, 3559.
48. C. Y. Yeh, Y. L. Chiang, G. H. Lee and S. M. Peng, Inorg. Chem. in press.
49. C. Y. Yeh, C. H. Chou, K. C. Pan, C. C. Wang, G. H. Lee, Y. O. Su and S. M. Peng, J. Chem. Soc. Dalton. in press.
50. H. C. Chang, J. T. Li, C. C. Wang, T. W. Lin, H. C. Lee, G. H. Lee and S. M. Peng, Eur. J. Inorg. Chem. 1999, 1243.
51. L. A. Bumm, J. J. Arnold, T. D. Dunbar, D. L. Allara and P. S. Weiss, J. Phys. Chem. B 1999, 103, 8122.
52. S. B. Sachs, S. P. Dudek, R. P. Hsung, L. R. Sita, J. F. Smalley, M. D. Newton, S. W. Feldberg and C. E. D. Chidsey, J. Am Chem. Soc. 1997, 119, 10563.
53. D. J. Wold and C. D. Frisbie, J. Am. Chem. Soc. 2001, 123, 5549.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔