(3.235.108.188) 您好!臺灣時間:2021/03/07 21:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃明義
研究生(外文):Huang Ming Yi
論文名稱:高分子發光二及體界面改質之研究
論文名稱(外文):Interface Modification of Polymer Light Emitting Diodes
指導教授:劉如熹劉如熹引用關係
指導教授(外文):R. S. Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:84
中文關鍵詞:有機發光二極體矽烷界面改質
外文關鍵詞:OLEDPLEDsilanePEDOTPVKinterface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
最近有機發光二極體元件(organic light emitting diode;OLED)因其具自發光、低耗電量、廣視角、高應答速度、高明暗對比等優點,於顯示器市場逐漸扮演舉足輕重之角色。然而主要之研究方向為新發光材料開發,但鮮少探討元件界面問題。即於氧化銦錫(Indium tin oxide;ITO)基板或金屬電極與有機共軛高分子層接合面仍存在能隙之問題,以致發光效率無法再提升。故如何發展新技術使接合面特性得以改善,乃為目前有機發光二極體重要研究課題。
本研究乃利用有機無機複合體之矽烷(silane)化合物藉以改善ITO基板與主要發光層間之界面問題。本研究分別以具不同官能基之矽烷類化合物,其中具烷氧基端可與ITO表面之二氧化錫形成鍵結,另一胺基、還氧基或苯環基端與有機發光層相結合。本研究以核磁共振波譜儀(Nuclear Magnetic Resonance Spectrometer;NMR)、紫外光/可見光吸收光譜儀(Ultraviolet/Visible Absorption Spectro- meter;UV)、原子力顯微鏡(Atomic Force Microscope;AFM)、螢光光譜儀(Fluorescence Spectrometer)與輝度計探討界面層之特性。藉上述分析發現以含苯環之矽烷類,可有效改善ITO界面,使其與有機發光層所製成之元件亮度得以提升。
此外,本研究於ITO界面導入PEDOT層,並藉由經加熱處理後發現可使發綠光(波長為500 nm左右)之元件(PVK+PBD+C6)變為藍光(波長400 nm)再轉變成藍白光。其乃為經熱處理後PEDOT與PVK產生中間體(exciplex)之故。
藉由本研究之結果,可瞭解有機發光二極體中ITO與有機層之界面對發光效率扮演極為重要之角色。

Recently, organic light emitting diodes (OLEDs) play an important role in display technology field because they have a lot of advantages, such as self-luminescence, low electricity consuming, widely viewing angle, fast response time, and high contrast. Most researches are to develop new luminescent materials. However, little researches are to study the problems of the interface. It is said that there are some kinds of energy gap between the indium tin oxide (ITO) (or metal electrode) and conjugate polymer layer. Existing energy gap causes the low luminescent efficiency of present OLEDs. Therefore developing a new technology to improve the properties of the interface is an important target in OLED’s research.
In our research, the silane compounds as an organic-inorganic hybrid materials are chosen to improve the properties of the interface between the ITO substrate and main luminescent layer. The silane compounds replace the hydroxyl groups (-OH) adsorbed on the ITO substrate forming a siloxane bond between the Si on one end of the silane compound and an oxygen atom on the ITO surface. The other end of silane compounds have amino, epoxy or phenyl function groups which will bond with the organic main luminescent layer. Nuclear magnetic resonance spectrometer (NMR), ultraviolet/visible absorption spectrometer (UV/VIS), atomic force microscope (AFM), fluorescence spectrometer and luminescent meter are used to study the properties of the interface. We found that N-Phenylaminopropyl trimethoxysilane among the silane compounds can improve the properties of the interface between the ITO and main luminescent layer which leads to promote the luminescent efficiency.
Moreover, we use poly(3,4-ethylenedioxy-thiophene) (PEDOT) as the interface between the ITO and main luminescent layer, and follow a special procedure to make the device (PVK+PBD+C6) change its radiative color from green to blue via heat treatment. Furthermore, radiative colors of the devices can be shifted from green to blue and then blue white by applying voltage. Such variation of the colors are strongly correlated with the formation of exciplex within the interface.
Based on the results of our research, we can understand that the interface between ITO and main luminescent layer plays a crucial role to promote the luminescent efficiency in OLEDs.

目 錄
謝誌 I
摘要 II
英文摘要 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究動機 1
1.2 高分子有機發光二極體發光原理 3
1.2.1 共軛系統 3
1.2.2 有機薄膜之電流密度 5
1.3 螢光理論 8
1.3.1 螢光成因 8
1.3.2 化學結構與螢光之關係 11
1.3.3 其他影響螢光之因素 12
1.4 元件設計 13
1-5 PLED之介面問題 14
1.5.1 有機電激發光(electroluminescence)元件
之界面模型 14
1.5.2 有機發光二極體界面問題之文獻回顧 17
1.6 本研究之方向 18
第二章 實驗內容 20
2.1 藥品 20
2.2 實驗步驟 21
2.2.1 蝕刻並清潔ITO(溼式蝕刻法) 21
2.2.2 製備主要發光層 21
2.2.3 表面改質層製備 22
2.2.4 元件製備 24
2.2.5 製程與電壓控制之PLED光色變化研究 24
2.3 物性及光電特性量測 25
第三章 結果與討論 34
3.1 含客分子摻雜之高分子元件特性分析 34
3.1.1 核磁共振光譜圖 34
3.1.2 光學性質 41
3.1.3 元件製備及其特性探討 44
3.1.3.1 光激發光譜(photoluminescence spectra)44
3.1.3.2 電激發光光譜(Electroluminescence spectra) 46
3.2 界面改質層之特性分析 51
3.2.1 表面型態分析 53
3.2.2 元件製備及其特性探討 57
3.2.2.1 螢光光譜 57
3.2.2.2 電致發光光譜 57
3.3 製程與電壓控制之PLED光色變化研究 65
3.3.1 電致發光光譜 65
第四章 結論 80
參考文獻 82

參考文獻
1. M. Pope, H. P. Kallmann and P. Magnante, J. Chem. Phys. 38, 2042 (1963).
2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
3. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature 347, 539 (1990).
4. D. A. Skoog and J. J. Leary, Principles of instrumental analysis,
p. 355 (1998).
5. Example of a display based on polymer LEDs , http://www.research.philips.com/pressmedia/releases/9802e.html, Royal Philips Electronics, Netherland (1998).
6. 莊坤儒, 工業材料, p. 138 (1999).
7. 時任靜士, 低分子系發光材料, p. 21 (1998).
8. C. C. Wu, J. C. Sturm, R. A. Register and M. E. Thompson, Appl. Phys. Lett. 69, 3117 (1996).
9. J. E. Littman and C. W. Tang, U. S. Patent No. 5,688,551, Eastman Kodak Company, New York, USA, (1997).
10. P. E. Burrows, S. R. Forrest, S. P. Sibley and M. E. Thompson, Appl. Phys. Lett. 69, 2959 (1996).
11. P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest and M. E. Thompson, IEEE Trans. Electron Device 44, 1188 (1997).
12. 城戶淳二, 素子構造之發光色制御, p. 103 (1998).
13. M. Aketagawa and M. Matsuura, 有機電激發光顯示器材料與元件研討會, p. 2-1 (1999).
14. 呂伯彥, 中文半導體技術雜誌-Flat Panel Display特輯, p. 68 (1999).
15. Y. E. Kim, H. Park and J. J. Kim, Appl. Phys. Lett. 69, 599 (1996).
16. L. S. Hung, C. W. Tang and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).
17. H. Tang, F. Li and J. Shinar, Appl. Phys. Lett. 71, 2560 (1997).
18. F. Li, H. Tang, J. Aderegg and J. Shinar, Appl. Phys. Lett. 70, 1233 (1997).
19. H. M. Lee, K. J. Choi, D. H. Hwang, L. M. Do, T. Zyung, J. W. Lee and J. K. Park, Appl. Phys. Lett. 72, 2382 (1998).
20. E. Ettedgui, H. Razafitrimo, Y. Gao and B. R. Hsieh, Appl. Phys. Lett. 67, 2705 (1995).
21. Y. Park, V. E. Choong, B. R. Hsieh, C. W. Tang and Y. Gao, Phys. Rev. Lett. 78, 3955 (1997).
22. C. Hosokawa, H. Tokailin, H. Higashi and T. Kusumoto, Appl. Phys. Lett. 60, 1220 (1992).
23. J. Kido, H. Shionoya and K. Nagai, Appl. Phys. Lett. 67, 2281 (1995).
24. 葉玉堂, 儀器總覽-化學分析儀器, p. 14 (1998).
25. 林鶴南, 儀器總覽-表面分析儀器, p. 29 (1998).
26. 柯崇文, 化學, p. 95 (2002).
27. 劉如熹, 白光發光二極體製作技術, p. 20 (2001).
28. S. E. Shaheen, B. Kippelen, N. Peyghambarian and J. F. Wang, J. Appl. Phys. 85, 7939 (1999).
29. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong and W. M. Lau, Appl. Phys. Lett. 80, 2778 (2002).
30. J. E. Malinsky, G. E. Jabbour, S. E. Shaheen and T. J. Marks, Adv. Mater. 11, 227 (1999).
31. C. Ganzorig, K. J. Kwak, K. Yagi and M. Fujihira, Appl. Phys. Lett. 79, 272 (2001).
32. V. Bliznyuk, B. Ruhstaller, P. J. Brock and S. A. Carter, Adv. Mater. 11, 1257 (1999).
33. J. W. Klaus, C. W. Tang and M. G. Mason, Appl. Phys. Lett. 70, 1934 (1997).
34. W. B. Lin, W. P. Lin, G. K. Wong and T. J. Marks, J. Am. Chem. Soc. 118, 8034 (1996).
35. W. B. Lin, T. L. Lee, P. F. Lyman, J. J. Lee, M. J. Bedzyk and T. J. Marks, J. Am. Chem. Soc. 119, 2205 (1997).
36. E. Gautier, A. Lorin, J. M. Nunzi, A. Schalchli, J. J. Benattar and D. Vital, Appl. Phys. Lett. 69, 1071 (1996).
37. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals, p. 739 (1982).
38. J. A. Osaheni and S. A. Jenekhe, Macromolecules 27, 739 (1994).
39. S. A. Jenekhe, Adv. Mater. 7, 309 (1995).
40. S. A. Jenekhe and J. A. Osaheni, Science 265, 765 (1994).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔