(3.238.186.43) 您好!臺灣時間:2021/02/28 21:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳德祐
研究生(外文):Der-Yow Chen
論文名稱:安非他命之驚跳反應致敏效果與情緒迴路之關係
論文名稱(外文):Amphetamine-induced Sensitization of Acoustic Startle Involves Emotion Circuitry
指導教授:梁庚辰梁庚辰引用關係
指導教授(外文):Keng Chen Liang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:136
中文關鍵詞:血壓胺杏仁核海馬迴麩胺酸NMDA受器非NMDA受器條件抑制作用
外文關鍵詞:5-HTamygdalahippocampusglutamateNMDA receptorsnon-NMDA receptorsconditioned inhibitory effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:376
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
  反覆注射神經興奮劑會使其對於行為的促進效果更加顯著,稱為致敏效果(或行為敏感化),而此效果被認為是導致藥物成癮及產生精神癥狀的原因之一。本論文以安非他命增強驚跳反應的現象來建立一個全新的大鼠行為典範,用以研究安非他命的致敏效果。本論文首先探討外在因素如何調節安非他命之驚跳反應致敏效果。在多次高劑量、短期戒斷的誘發程序下,環境刺激與行為執行兩種因素並不影響致敏效果,但單次低劑量、長期戒斷的誘發程序所引起的致敏效果就會受到影響。
  本研究也發現若在動物的飼養籠給藥,無論那一種誘發程序皆無法產生致敏效果。反之,在新奇環境給藥,即使缺乏先前所提到的兩種外在因素仍有致敏效果。本論文假設長期用藥會導致個體的情緒反應愈來愈敏感,藥物與環境的交互作用造成腦中情緒迴路的長期改變,最終反映於驚跳反應的致敏效果。這個假設受到以下證據的支持:注射抗焦慮劑buspirone與抗憂鬱劑fluoxetine兩種藥物都能有效阻斷安非他命之驚跳反應致敏效果。值得注意的是buspirone對致敏效果的阻斷有時間依存效果。
  過去有研究指出,藥物與壓力會有交互致敏的現象,而且與腎上腺皮質素有關。但本研究發現切除腎上腺或注射促腎上腺皮質釋放因子拮抗劑並不能阻斷驚跳反應之致敏效果,暗示情緒致敏可能有其他神經機制。另一系列的實驗探討中樞情緒迴路在驚跳反應致敏效果所扮演的角色。阻斷杏仁核中的麩胺酸受器也能在不同階段阻止致敏效果的形成或表現。若以muscimol暫時抑制背側海馬迴可消除飼養籠給藥對於致敏效果的抑制。
這些證據顯示安非他命改變了情緒迴路(包括杏仁核與海馬迴)的功能,進而導致驚跳反應的致敏效果。本研究所提出之情緒致敏的概念可能具有臨床上的意義,有助於發展一些治療方法緩解藥癮患者的情緒困擾,甚至可以推廣至創傷後壓力症候群的患者。
  Behavioral sensitization induced by repeated use of certain drugs is implicated in genesis of addiction and associated psychopathology. This dissertation developed a new paradigm to study sensitization in the enhancing effect of amphetamine (AMPH) on acoustic startle. The influences of various environmental and behavioral factors were first examined. Evidence indicated that the context stimuli and behavioral execution associated with drug influences are important in sensitization induced by a single low dose injection of AMPH tested one month after drug withdrawal. However, repeated injections of a high dose AMPH greatly facilitated the pace of sensitization and overrode the influences of environmental and behavioral factors.
  In both induction regimens, rats receiving AMPH in their home cages failed to develop sensitization, on the other hand, rats receiving drug in a novel environment expressed significant sensitization. These results raised a possibility that sensitization after intermittent AMPH administration may reflect an increase in emotionality brought about by plastic changes in the emotion circuitry. This hypothesis was supported by the data that administration of an atypical anxiolytic buspirone (5.0 mg/kg), or an antidepressant drug fluoxetine (5.0 mg/kg), prevented the development or expression of sensitization.
  It has been demonstrated that cross-sensitization between stress and psychostimulants, and the corticosterone plays a critical role. However, we found that startle sensitization was not affected by adrenalectomy or infusion of corticotropin releasing factor antagonist into cerebral ventricle. A series of experiments were undertaken to investigate the involvement of the amygdala and hippocampus in development and expression of AMPH-induced sensitization of the acoustic startle as well as their suppression under certain circumstances. Blockade of glutamate transmission in the amygdala by NMDA or non-NMDA antagonists successfully interfered with the induction and/or expression of sensitization. Further, inactivation of the dorsal hippocampus by a GABAA antagonist muscimol relieved the home cage suppression effect on startle sensitization, both during development and expression.
  These findings suggest that repeated administration of AMPH might alter the function of the emotion circuitry involving the amygdala and hippocampus, and hence lead to sensitization of acoustic startle. This view has clinical implications on developing therapeutic means for emotional disorders in drug addicts and in patients of the post-traumatic stress disorder.
Abstract........................................................i
Chapter 1. Introduction ........................................1
1-1. Behavioral Sensitization to Psychostimulants.............1
1-2. External Factors Modulate Behavioral Sensitization...... 7
1-3. Psychological Factors and Emotionality.................. 11
1-4. Possible Neural Mechanism of Startle Sensitization...... 17
1-5. Objectives of This Dissertation......................... 23
Chapter 2. General Methods..................................... 25
Subjects..................................................... 25
Surgery................................................. 25
Drugs and drug administration............................... 26
Startle apparatus........................................... 28
Measurement of the acoustic startle responses ................28
AMPH-induced sensitization of acoustic startle................29
Histological verification.................................... 29
Data analysis.................................................30
Chapter 3. AMPH-induced Sensitization to Acoustic Startle and
External Modulatory Factors.................................31
Experiment 3-1: The acute effect of AMPH on acoustic startle 32
Experiment 3-2: AMPH-induced sensitization of acoustic startle33
Experiment 3-3. Role of eliciting stimulus or contextual cues
in sensitization........................ 35
Experiment 3-4. The role of behavioral execution
in sensitization .............................38
Experiment 3-5. Contingency between drug and context as well
as behavior execution ........................39
Experiment 3-6. Single low dose regimen and the role of
external and internal contexts............... 41
Discussion................................................... 42
Chapter 4. Psychological Modulation of Sensitization:
Home, Novelty and Emotionality...................... 46
Experiment 4-1. Differential Sensitization for drug administered
in the home cage and a Novel environment..... 48
Experiment 4-2. The effect of buspirone on
startle sensitization.........................50
Experiment 4-3. The effect of fluoxetine on
startle sensitization.........................52
Discussion 53
Chapter 5. The Role of Emotional Circuitry in
Startle Sensitization.............................. 56
Experiment 5-1: Adrenalectomy and adrenal demedullation
failed to attenuate the acute and
sensitization effects of AMPH on startle..... 57
Experiment 5-2: Lack of effect of icv infusion of a-helical
CRF9-41 on expression of sensitization....... 60
Experiment 5-3. Effects of intra-amygdala infusion of NMDA or
non-NMDA antagonists on AMPH-induced startle
sensitization................................ 62
Experiment 5-4. Rats infused with muscimol into the dorsal
hippocampus showed sensitization even having
AMPH at the home cage ........................64
Discussion.............................................. 66
Chapter 6. General Discussion...................................72
Reference.................................................. 79
Adamec, R. (1998). Amygdala kindling and rodent anxiety. In M. E. Corcoran & S. L. Moshe (Eds.), Kindling 5 (pp. 327-348). New York: Plenum Press.
Ahtee, L. (1974). Catalepsy and stereotypies in rats treated with methadone relation to striatal dopamine. European Journal of Pharmacology, 27, 221-230.
Anagnostaras, S. G., & Robinson, T. E. (1996). Sensitization to the psychomotor stimulant effects of amphetamine: modulation by associative learning. Behavioral Neuroscience, 110, 1397-1414.
Antelman, S. M., Eichler, A. J., Black, C. A., & Kocan, D. (1980). Interchangeability of stress and amphetamine in sensitization. Science, 207, 329-331.
Badiani, A., Morano, M. I., Akil, H., & Robinson, T. E. (1995). Circulating adrenal hormones are not necessary for the development of sensitization to the psychomotor activating effects of amphetamine. Brain Research, 673, 13-24.
Badiani, A., Oates, M. M., Day, H. E., Watson, S. J., Akil, H., & Robinson, T. E. (1998). Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modulation by environmental novelty. Journal of Neuroscience, 18, 10579-10593.
Badiani, A., Oates, M. M., & Robinson, T. E. (2000). Modulation of morphine sensitization in the rat by contextual stimuli. Psychopharmacology, 151, 273-282.
Bardo, M. T., Donohew, R. L., & Harrington, N. G. (1996). Psychobiology of novelty seeking and drug seeking behavior. Behavioral Brain Research, 77, 23-43.
Battisti, J. J., Chang, C. H., Uretsky, N. J., & Wallace, L. J. (1999). Sensitization of stereotyped behavior to amphetamine is context and response dependent. Pharmacology, Biochemistry and Behavior, 63, 263-269.
Bell, I. R., Miller, C. S., & Schwartz, G. E. (1992). An olfactory-limbic model of multiple chemical sensitivity syndrome: possible relationship to kindling and affective spectrum disorders. Biological Psychiatry, 32, 218-242.
Bennett, C., Liang, K. C., & McGaugh, J. L. (1985). Depletion of adrenal catecholamines alters the amnestic effect of amygdala stimulation. Behavioural Brain Research, 15, 83-91.
Borowski, T. B., & Kokkinidis, L. (1992). Long-term influence of d-amphetamine on mesolimbic brain-stimulation reward: comparison to chronic haloperidol and naloxone effects. Pharmacology, Biochemistry and Behavior, 43, 1-15.
Borowski, T. B., & Kokkinidis, L. (1994). Cocaine preexposure sensitizes conditioned fear in a potentiated acoustic startle paradigm. Pharmacology, Biochemistry and Behavior, 49, 935-942.
Browman, K. E., Badiani, A., & Robinson, T. E. (1996). Fimbria-fornix lesions do not block sensitization to the psychomotor activating effects of amphetamine. Pharmacology, Biochemistry and Behavior, 53, 899-902.
Browman, K. E., Badiani, A., & Robinson, T. E. (1998). The influence of environment on the induction of sensitization to the psychomotor activating effects of intravenous cocaine in rats is dose-dependent. Psychopharmacology, 137, 90-98.
Cador, M., Bjijou, Y., Cailhol, S., & Stinus, L. (1993). Role of a glutamatergic prefrontal/VTA innervation on amphetamine-induced behavioral sensitization to amphetamine. Society for Neuroscience Abstract, 23, 1093.
Cador, M., Bjijou, Y., & Stinus, L. (1995). Evidence of a complete independence of the neurobiological substrates for the induction and expression of behavioral sensitization to amphetamine. Neuroscience, 65, 385-395.
Cador, M., Cole, B. J., Koob, G. F., Stinus, L., & Le Moal, M. (1993). Central administration of corticotropin releasing factor induces long-term sensitization to d-amphetamine. Brain Research, 606, 181-186.
Carlezon, W. A. J., Mendrek, A., & Wise, R. A. (1995). MK-801 disrupts the expression but not the development of bromocriptine sensitization: a state-dependency interpretation. Synapse, 20, 1-9.
Chen, D. Y., Ho, S. H., & Liang, K. C. (2000). Startle responses to electric shocks: Measurement of shock sensitivity and effects of morphine, buspirone and brain lesions. Chinese Journal of Physiology, 43, 35-47.
Chen, J. C., Su, H. J., Huang, L. I., & Hsieh, M. M. (1999). Reductions in binding and functions of D2 dopamine receptors in the rat ventral striatum during amphetamine sensitization. Life Sciences, 64, 343-354.
Cole, B. J., Cador, M., Stinus, L., Rivier, J., Vale, W., Koob, G. F., & Le Moal, M. (1990). Central administration of a CRF antagonist blocks the development of stress-induced behavioral sensitization. Brain Research, 512, 343-346.
Cole, R. L., Konradi, C., Douglass, J., & Hyman, S. E. (1995). Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron, 14, 813-823.
Coutureau, E., Galani, R., Jarrard, L. E., & Cassel, J.-C. (2000). Selective lesions of the entorhinal cortex, the hippocampus, or the fimbria-fornix in rats: a comparison of effects on spontaneous and amphetamine-induced locomotion. Experimental Brain Research, 131, 381-392.
Crombag, H. S., Badiani, A., Chan, J., Dell''Orco, J., Dineen, S. P., & Robinson, T. E. (2001). The ability of environmental context to facilitate psychomotor sensitization to amphetamine can be dissociated from its effect on acute drug responsiveness and on conditioned responding. Neuropsychopharmacology, 24, 680-690.
Crombag, H. S., Badiani, A., Maren, S., & Robinson, T. E. (2000). The role of contextual versus discrete drug-associated cues in promoting the induction of psychomotor sensitization to intravenous amphetamine. Behavioral Brain Research, 116, 1-22.
D''Aquila, P. S., Peana, A. T., Tanda, O., & Serra, G. (2001). Carbamazepine prevents imipramine-induced behavioural sensitization to the dopamine D(2)-like receptor agonist quinpirole. European Journal of Pharmacology, 416, 107-111.
Davis, M. (1980). Neurochemical modulation of sensory-motor reactivity: acoustic and tactile startle reflexes. Neuroscience and Biobehavioral Reviews, 4, 241-263.
Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353-375.
Davis, M., Gendelman, D. S., Tischler, M. D., & Gendelman, P. M. (1982). A primary acoustic startle circuit: lesion and stimulation studies. Journal of Neuroscience, 2, 791-805.
Davis, M., Svensson, T. H., & Aghajanian, G. K. (1975). Effects of d- and l-amphetamine on habituation and sensitization of the acoustic startle response in rats. Psychopharmacologia, 43, 1-11.
De Vries, T. J., Schoffelmeer, A. N., Tjon, G. H., Nestby, P., Mulder, A. H., & Vanderschuren, L. J. (1996). Mifepristone prevents the expression of long-term behavioural sensitization to amphetamine. European Journal of Pharmacology, 307, 3-4.
Deroche, V., Piazza, P. V., Casolini, P., Le Moal, M., & Simon, H. (1993). Sensitization to the psychomotor effects of amphetamine and morphine induced by food restriction depends on corticosterone secretion. Brain Research, 611, 352-356.
Deroche, V., Piazza, P. V., Maccari, S., Le Moal, M., & Simon, H. (1992). Repeated corticosterone administration sensitizes the locomotor response to amphetamine. Brain Research, 584, 309-313.
Diagnostic and statistical manual of mental disorders, fourth edition. (1994). Washington, D.C.: American Psychiatric Association.
Druhan, J. P., Geyer, M. A., & Valentino, R. J. (1998). Lack of sensitization to the effects of d-amphetamine and apomorphine on sensorimotor gating in rats. Psychopharmacology, 135, 296-304.
Dykman, R. A., Ackerman, P. T., & Newton, J. E. (1997). Posttraumatic stress disorder: a sensitization reaction. Integrative Physiological & Behavioral Science, 32, 9-18.
Ebert, U., & Koch, M. (1996). Amygdala kindling does not change emotional responding as measured by the acoustic startle response in the rat. Brain Research, 733, 193-202.
Echols, S. D. (1977). Circling of mice bearing unilateral striatal lesions:development of increased response to D-amphetamine. Life Sciences, 21, 563-568.
Fendt, M., Koch, M., & Schnitzler, H. U. (1996). NMDA receptors in the pontine brainstem are necessary for fear potentiation of the startle response. European Journal of Pharmacology, 318, 1-6.
Fendt, M., Koch, M., & Schnitzler, H. U. (1997). Corticotropin-releasing factor in the caudal pontine reticular nucleus mediates the expression of fear-potentiated startle in the rat. European Journal of Neuroscience, 9, 299-305.
Fendt, M., Koch, M., & Schnitzler, H.-U. (1994). Amygdaloid noradrenaline is involoved in the sensitization of the acoustic startle response in rats. Pharmacology, Biochemistry and Behavior, 48, 307-314.
Gelowitz, D. L., & Kokkinidis, L. (1999). Enhanced amygdala kindling after electrical stimulation of the ventral tegmental area: implications for fear and anxiety. Journal of Neuroscience, 19, RC41.
Goddard, G. V., McIntyre, D. C., & Leech, C. K. (1969). A permanent change in brain function resulting from daily electrical stimulation. Experimental Neurology, 25, 295-330.
Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. (2nd ed.). New York: Oxford University Press.
Heidbreder, C. A., Thompson, A. C., & Shippenberg, T. S. (1996). Role of extracellular dopamine in the initiation and long-term expression of behavioral sensitization to cocaine. Journal of Pharmacology & Experimental Therapeutics, 278, 490-450.
Helfer, V., Deransart, C., Marescaux, C., & Depaulis, A. (1996). Amygdala kindling in the rat: anxiogenic-like consequences. Neuroscience, 73, 971-978.
Henry, C., Guegan, G., Cador, M., Arnauld, E., Arsaut, J., Le Moal, M., & Demotes-Mainard, J. (1995). Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens. Brain Research, 685, 179-186.
Herman, J. P., Schafer, M., Young, E. A., Thompson, R., Douglass, J., Akil, H., & Watson, S. J. (1989). Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. Journal of Neuroscience, 9, 3072-3082.
Hinson, R. E., & Poulos, C. X. (1981). Sensitization to the behavioral effects of cocaine: modification by Pavlovian conditioning. Pharmacology, Biochemistry and Behavior, 15, 559-562.
Hitchcock, J. M., & Davis, M. (1991). Efferent pathway of the amygdala involved in conditioned fear as measured with the fear-potentiated startle paradigm. Behavioral Neuroscience, 105, 826-842.
Honey, R. C., Watt, A., & Good, M. (1998). Hippocampal lesions disrupt an associative mismatch process. Journal of Neuroscience, 18, 2226-2230.
Hooks, M. S., Jones, G. H., Neill, D. B., & Justice, J. B. (1992). Individual differences in amphetamine sensitization: dose-dependent effects. Pharmacology, Biochemistry and Behavior, 41, 203-210.
Hope, B. T., Nye, H. E., Kelz, M. B., Self, D. W., Iadarola, M. J., Nakabeppu, Y., Duman, R. S., & Nestler, E. J. (1994). Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron, 13, 1235-1244.
Horger, B. A., Shelton, K., & Schenk, S. (1990). Preexposure sensitizes rats to the rewarding effects of cocaine. Pharmacology, Biochemistry and Behavior, 37, 707-711.
Huang, Y. H., Tsai, S. J., Wang, Y. C., Yu, M. F., Yang, Y. C., & Sim, C. B. (1997). Differential development of the enhanced metabolic response during amphetamine sensitization. Neuropsychobiology, 36, 177-181.
Ito, K. (1999). The role of gamma-aminobutyric acid (GABA)-benzodiazepine neurotransmission in an animal model of methamphetamine-induced psychosis. Hokkaido Journal of Medical Science, 74, 135-144.
Iwamoto, E. T., & Way, E. L. (1977). Circling behavior and stereotypy induced by intranigral opiate microinjections. Journal of Pharmacology and Experimental Therapeutics, 145, 1-10.
Jodogne, C., Marinelli, M., Le Moal, M., & Piazza, P. V. (1994). Animals predisposed to develop amphetamine self-administration show higher susceptibility to develop contextual conditioning of both amphetamine-induced hyperlocomotion and sensitization. Brain Research, 657, 236-244.
Joyce, E. M., & Iversen, S. D. (1979). The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neuroscience Letter, 14, 207-212.
Kabbaj, M., Devine, D. P., Savage, V. R., & Akil, H. (2000). Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: differential expression of stress-related molecules. Journal of Neuroscience, 20, 6983-6988.
Kalivas, P. W., & Alesdatter, J. E. (1993). Involvement of N-methyl-D-aspartate receptor stimulation in the ventral tegmental area and amygdala in behavioral sensitization. Journal of Pharmacology and Experimental Therapeutics, 267, 486-495.
Kalivas, P. W., & Duffy, P. (1987). Sensitization to repeated morphine injection in rat: possible involvement of A10 dopamine neurons. Journal of Pharmacology and Experimental Therapeutics, 241, 204-212.
Kalivas, P. W., & Duffy, P. (1988). Effects of daily cocaine and morphine treatment of somatodendritic and terminal field dopamine release. Journal of Neurochemistry, 50, 1498-1504.
Kalivas, P. W., & Duffy, P. (1993). Time-course of extracellular dopamine and behavioral sensitization to cocaine: I. Dopamine axon terminals. Journal of Neuroscience, 13, 266-275.
Kalivas, P. W., & Duffy, P. (1995). D1 receptors modulate glutamate transmission in the ventral tegmental area. Journal of Neuroscience, 15, 5379-5388.
Kalivas, P. W., & Duffy, P. (1997). Dopamine regulation of extracellular glutamate in the nucleus accumbens. Brain Research, 761, 173-177.
Kalivas, P. W., & Stewart, J. (1991). Dopamine transmission in the initiation and expression of drug and stress-induced sensitization of motor activity. Brain Research Reviews, 16, 223-244.
Kalynchuk, L. E., Pinel, J. P. J., & Treit, D. (1998). Long-term kindling and interictal emotionality in rats: effect of stimulation site. Brain Research, 779, 149-157.
Kalynchuk, L. E., Pinel, J. P. J., Treit, D., & Kippin, T. E. (1997). Changes in emotional behavior produced by long-term amygdala kindling in rats. Biological Psychiatry, 41, 438-451.
Karler, R., Calder, L. D., Chaudhry, I. A., & Turkanis, S. A. (1989). Blockade of ''reverse tolerance'' to cociane and amphetamine by MK-801. Life Sciences, 45, 599-606.
Karler, R., Calder, L. D., & Turkanis, S. A. (1991). DNQX blockade of amphetamine behavioral sensitization. Brain Research, 552, 295-300.
Karler, R., Chaudhry, I. A., Calder, L. D., & Turkanis, S. A. (1990). Amphetamine behavioral sensitization and the excitatory amino acids. Brain Research, 537, 76-82.
Kavoussi, R. J., & Coccaro, E. F. (1993). The amphetamine challenge test correlates with affective lability in healthy volunteers. Psychiatry Research, 48, 219-228.
Kehne, J. H., & Sorenson, C. A. (1978). Effects of pimozide and phenoxybenzamine pretreatments on amphetamine and apomorphine potentiation of the acoustic startle response in rats. Psychopharmacology, 58, 137-144.
Kelly, A. E., Lang, C. G., & Gauthier, A. M. (1988). Induction of oral stereotypy following amphetamine microinjection into a discrete subregion of the striatum. Psychopharmacology, 95, 556-559.
Khan, M. A., & Shoaib, M. (1996). Neuroanatomical localization of the effects of (+)-HA966 on locomotor activity after cocaine injections to the nucleus accumbens of rats. Brain Research, 719, 198-202.
Kirk, R. E. (1995). Experimental design: procedures for the behavioral sciences. Pacific Grove, CA: Brooks/Cole Publishing Company.
Kirkby, R. D., Gelowitz, D. L., & Kokkinidis, L. (1991). The effects of amphetamine preexposure on electrical kindling of the hippcampus and related transfer phenomena. Brain Research, 550, 161-164.
Kirkby, R. D., & Kokkinidis, L. (1987). Evidence for a relationship between amphetamine sensitization and electrical kindling of the amygdala. Experimental Neurology, 97, 270-279.
Kirkby, R. D., & Kokkinidis, L. (1991). Amphetamine sensitization and amygdala kindling: pharmacological evaluation of catecholaminergic and cholinergic mechanisms. Brain Research Bulletin, 26, 357-364.
Koch, M. (1993). Microinjections of the metabotropic glutamate receptor agonist, trans-(+/-)-1-amino-cyclopentane-1,3-dicarboxylate (trans-ACPD) into the amygdala increase the acoustic startle response of rats. Brain Research, 629, 176-179.
Koch, M. (1999). The neurobiology of startle. Progress in Neurobiology, 59, 107-128.
Koch, M., & Ebert, U. (1993). Enhancement of the acoustic startle response by stimulation of an excitatory pathway from the central amygdala/basal nucleus of Meynert to the pontine reticular formation. Experimental Brain Research, 93, 231-241.
Kokkinidis, L. (1984). Effects of chronic intermittent and continuous amphetamine administration on acoustic startle. Pharmacology, Biochemistry and Behavior, 20, 367-371.
Kokkinidis, L., & Anisman, H. (1978). Involvement of norepinephrine in startle arousal after acute and chronic d-amphetamine administration. Psychopharmacology, 59, 285-292.
Kokkinidis, L., & Anisman, H. (1981). Amphetamine psychosis and schizophrenia: a dual model. Neuroscience and Biobehavioral Reviews, 5, 449-461.
Kokkinidis, L., & Borowski, T. B. (1991). Sensitization of mesolimbic brain stimulation reward after electrical kindling of the amygdala. Brain Research Bulletin, 27, 791-796.
Kokkinidis, L., & MacNeill, E. P. (1982). Potentiation of d-amphetamine and L-dopa-induced acoustic startle activity after long-term exposure to amphetamine. Psychopharmacology, 78, 331-335.
Kreek, M. J., & Koob, G. F. (1998). Drug dependence: stress and dysregulation of brain reward systems. Drug and Alcohol Dependence, 51, 23-47.
Kuczenski, R., & Leith, N. J. (1981). Chronic amphetamine: is dopamine a link in or mediator of the development of tolerance or reverse tolerance? Pharmacology, Biochemistry and Behavior, 15, 405-413.
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1990). Emotion, attention and the startle reflex. Psychological Review, 97, 377-395.
Laviola, G., & Adriani, W. (1998). Evaluation of unconditioned novelty seeking and d-amphetamine conditioned motivation in mice. Pharmacology, Biochemistry and Behavior, 59, 1011-1020.
Laviola, G., Adriani, W., Terranova, M. L., & Gerra, G. (1999). Psychobiological risk factors for vulnerability to psychostimulants in human adolescents and animal models. Neuroscience and Biobehavioral Reviews, 23, 993-1010.
Lee, E. H. Y., Lee, C. P., Wang, H. I., & Lin, W. R. (1993). Hippocampal CRF, NE, and NMDA system interactions in memory processing in the rat. Synapse, 14, 144-153.
Lee, E. H. Y., & Ma, Y. L. (1995). Amphetamine enhances memory retention and facilitates norepinephrine release from the hippocampus in rats. Brain Research Bulletin, 37, 411-416.
Lee, Y., Schulkin, J., & Davis, M. (1994). Effect of corticosterone on the enhancement of the acoustic startle reflex by corticotropin releasing factor (CRF). Brain Research, 666, 93-98.
Leith, N. J., & Kuczenski, R. (1982). Two dissociable components of behavioral sensitization following repeated amphetamine administration. Psychopharmacology, 76, 310-315.
Lett, B. T. (1989). Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology, 98, 357-362.
Leyton, M., & Stewart, J. (1990). Preexposure to foot-shock sensitizes the locomotor response to subsequent systemic morphine and intra-nucleus accumbens amphetamine. Pharmacology, Biochemistry and Behavior, 37, 303-310.
Li, Y., Vartanian, A. J., White, F. J., Xue, C. J., & Wolf, M. E. (1997). Effects of the AMPA receptor antagonist NBQX on the development and expression of behavioral sensitization to cocaine and amphetamine. Psychopharmacology, 134, 266-276.
Li, Y., & Wolf, M. E. (1997). Ibotenic acid lesions of prefrontal cortex do not prevent expression of behavioral sensitization to amphetamine. Behavioural Brain Research, 84, 285-289.
Li, Y., & Wolf, M. E. (1999). Can the ''state-dependency'' hypothesis explain prevention of amphetamine sensitization in rats by NMDA receptor antagonists? Psychopharmacology, 141, 351-361.
Li, Y., Wolf, M. E., & White, F. J. (1999). The expression of cocaine sensitization is not prevented by MK-801 or ibotenic acid lesions of the medial prefrontal cortex. Behavioural Brain Research, 104, 119-125.
Liang, K. C. (1998). Pretraining infusion of DSP-4 into the amygdala impaired retention in the inhibitory avoidance task: involvement of norepinephrine but not serotonin in memory facilitation. Chinese Journal of Physiology, 41, 223-233.
Liang, K. C., Chen, H. C., & Chen, D. Y. (2001). Posttraining infusion of norepinephrine and corticotropin releasing factor into the bed nucleus of the stria terminalis enhanced retention in an inhibitory avoidance task. Chinese Journal of Physiology, 44, 33-43.
Liang, K. C., Chen, L. L., & Huang, T. E. (1995). The role of amygdala norepinephrine in memory formation: involvement in the memory enhancing effect of peripheral epinephrine. Chinese Journal of Physiology, 38, 81-91.
Liang, K. C., Juler, R. G., & McGaugh, J. L. (1986). Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Research, 368, 125-133.
Liang, K. C., Melia, K. R., Miserendino, M. J., Falls, W. A., Campeau, S., & Davis, M. (1992). Corticotropin-releasing factor: long-lasting facilitation of the acoustic startle reflex. Journal of Neuroscience, 12, 2303-2312.
Limaga, U., Johansson, P., Nylander, I., & Gunne, L. M. (1989). Intranigral infusion of enkephalins elicits dyskinetic biting in rats. Psychopharmacology, 99, 299-303.
Maccari, S., Piazza, P. V., Deminiere, J. M., Angelucci, L., Simon, H., & Le Moal, M. (1991). Hippocampal type I and type II corticosteroid receptor affinities are reduced in rats predisposed to develop amphetamine self-administration. Brain Research, 548, 305-309.
Maccari, S., Piazza, P. V., Deminiere, J. M., Lemaire, V., Mormede, P., Simon, H., Angelucci, L., & Le Moal, M. (1991). Life events-induced decrease of corticosteroid type I receptors is associated with reduced corticosterone feedback and enhanced vulnerability to amphetamine self-administration. Brain Research, 547, 7-12.
Magarinos, A. M., & McEwen, B. S. (1995). Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience, 69, 89-98.
Magos, L. (1969). Persistence of the effect of amphetamine on stereotyped activity on rats. European Journal of Pharmacology, 6, 200-201.
Martinez, J. L., Vasquez, B. J., Rigter, H., Messing, R. B., Jensen, R. A., Liang, K. C., & McGaugh, J. L. (1980). Attenuation of amphetamine-induced enhancement of learning by adrenal demedullation. Brain Research, 195, 433-443.
Mazurski, E. J., & Beninger, R. J. (1987). Environment-specific conditioning and sensitization with (+)-amphetamine. Pharmacology, Biochemistry and Behavior, 27, 61-65.
McEwen, B. S. (1994). Corticosteroids and hippocampal plasticity. Annals of the New York Academy of Sciences, 746, 134-142.
McGaugh, J. L. (1983). Hormonal influence on memory. Annual Review of Psychology, 34, 297-323.
McNamara, J. O. (1984). Kindling: An animal model of complex partial epilepsy. Annals of Neurology, 16, S72-S76.
Melia, K. R., Sananes, C. B., & Davis, M. (1992). Melia KR. Sananes CB. Davis M. Lesions of the central nucleus of the amygdala block the excitatory effects of septal ablation on the acoustic startle reflex. Physiology and Behavior, 51, 175-180.
Mittleman, G., Jones, G. H., & Robbins, T. W. (1991). Sensitization of amphetamine-stereotypy reduces plasma corticosterone: implications for stereotypy as a coping response. Behavioral and Neural Biology, 56, 170-182.
Mora, F., & Porras, A. (1993). Effects of amphetamine on the release of excitatory amino acid neurotransmitters in the basal ganglia of the conscious rat. Canadian Journal of Physiology & Pharmacology, 71, 348-351.
Nestler, E. J., & Aghajanian, G. K. (1997). Molecular and cellular basis of addiction. Science, 278, 58-63.
Nye, H. E., & Nestler, E. J. (1996). Induction of chronic Fos-related antigens in rat brain by chronic morphine administration. Journal of Pharmacology and Experimental Therapeutics, 49, 636-645.
Paulson, P. E., Camp, D. M., & Robinson, T. E. (1991). Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology, 103, 480-492.
Pauly, J. R., Robinson, S. F., & Collins, A. C. (1993). Chronic corticosterone administration enhances behavioral sensitization to amphetamine in mice. Brain Research, 620, 195-202.
Paxinos, G., & Watson, C. (1997). The rat brain in stereotaxic coordinates (compact third ed.). San Diego: Academic Press.
Pelton, G. H., Lee, Y., & Davis, M. (1997). Repeated stress also sensitizes the excitatory effects of CRF on the acoustic startle reflex. Brain Research, 778, 381-387.
Pert, A., Post, R., & Weiss, S. R. (1990). Conditioning as a critical determinant of sensitization induced by psychomotor stimulants. NIDA Research Monograph, 97, 208-241.
Piazza, P. V., Deminiere, J. M., Le Moal, M., & Simon, H. (1989). Factors that predict individual vulnerability to amphetamine self-administration. Science, 245, 1511-1513.
Piazza, P. V., Deminiere, J. M., Le Moal, M., & Simon, H. (1990). Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Research, 514, 22-26.
Pierce, R. C., Bell, K., Duffy, P., & Kalivas, P. W. (1996). Repeated cocaine augments excitatory amino transmission in the nucleus accumbens only in rats having developed behavioral sensitization. Journal of Neuroscience, 16, 1550-1560.
Pierce, R. C., Hicks, J., Reeder, D., Morgan, Z. R., & Kalivas, P. W. (1996). Bilateral ibotenic acid lesions of the dorsal prefrontal cortex block the expression of behavioral sensitization to cocaine. Society for Neuroscience Abstract, 22, 930.
Pierce, R. C., & Kalivas, P. W. (1997). A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Research Reviews, 25, 192-216.
Pierre, P. J., & Vezina, P. (1997). Predisposition to self-administer amphetamine: the contribution of response to novelty and prior exposure to the drug. Psychopharmacology, 129, 277-284.
Pinel, J. P. J., Kalynchuk, L. E., & Treit, D. (1998). Long-term amygdala kindling and defensive behavior in rats. In M. E. Corcoran & S. L. Moshe (Eds.), Kindling 5. New York: Plenum Press.
Pinel, J. P. J., Kim, C. K., & Mana, M. J. (1990). Contingent tolerance to the anticonvulsant effects of drugs on kindled convulsions. In J. A. Wada (Ed.), Kindling 4. New York: Plenum Press.
Post, R. M. (1990). Sensitization and kindling perspectives for the course of affective illness: toward a new treatment with the anticonvulsant carbamazepine. Pharmacopsychiatry, 23, 3-17.
Post, R. M. (1992). Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. American Journal of Psychiatry, 149, 999-1010.
Post, R. M., Lockfeld, A., Squillace, K. M., & Contel, N. R. (1981). Drug-environment interaction: Context dependency of cocaine-induced behavioral sensitization. Life Sciences, 28, 755-760.
Post, R. M., & Weiss, S. R. B. (1998). Sensitization and kindling phenomena in mood, anxiety, and obsessive-compulsive disorders: the role of serotonergic mechanisms in illness progression. Biological Psychiatry, 44, 193-206.
Post, R. M., Weiss, S. R. B., & Pert, A. (1984). Differential effects of carbamazepine and lithium on sensitization and kindling. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 8, 425-434.
Post, R. M., Weiss, S. R. B., & Pert, A. (1991). Animal models of mania. In P. Willner & J. Scheel-Kruger (Eds.), The mesolimbic dopamine system: from motivaton to action. (pp. 443-472). Chichester, England: Wiley.
Post, R. M., Weiss, S. R. B., & Smith, M. A. (1995). Sensitization and kindling: Implications for the evolving neural substrates of post-traumatic stress disorder. In M. J. Friedman & D. S. Charney & A. Y. Deutch (Eds.), Neurobiological and clinical consequences of stress: From normal adaptation to PTSD (pp. 203-224). Philadelphia: Lippincott-Raven Publishers.
Poulos, C. X., & Cappell, H. (1991). Homeostatic theory of drug tolerance: a general model of physiological adaptation. Psychological Review, 98, 390-408.
Richtand, N. M., Woods, S. C., Berger, S. P., & Strakowski, S. M. (2001). D3 dopamine receptor, behavioral sensitization, and psychosis. Neuroscience and Biobehavioral Reviews, 25, 427-443.
Rivet, J. M., Stinus, L., Le Moal, M., & Mormede, P. (1989). Behavioral sensitization to amphetamine is dependent on corticosteroid receptor activation. Brain Research, 498, 149-153.
Roberts, A. J., Lessov, C. N., & Phillips, T. J. (1995). Critical role for glucocorticoid receptors in stress- and ethanol-induced locomotor sensitization. Journal of Pharmacology & Experimental Therapeutics, 275, 790-797.
Robinson, T. E. (1984). Behavioral sensitization: characterization of enduring changes in rotational behavior produced by intermittent injections of amphetamine in male and female rats. Psychopharmacology, 84, 466-475.
Robinson, T. E. (1993). Persistent sensitizing effects of drugs on brain dopamine systems and behavior: implications for addiction and relapse. In S. G. Korenman & J. D. Barchas (Eds.), Biological Basis of Substance Abuse (pp. 373-402). New York: Oxford University Press.
Robinson, T. E., & Becker, J. B. (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Research Reviews, 11, 157-198.
Robinson, T. E., Becker, J. B., & Presty, S. K. (1982). Long-term facilitation of amphetamine-induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Research, 253, 231-241.
Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews, 18, 247-291.
Robinson, T. E., Browman, K. E., Crombag, H. S., & Badiani, A. (1998). Modulation of the induction or expression of psychostimulant sensitization by the circumstances surrounding drug administration. Neuroscience and Biobehavioral Reviews, 22, 347-354.
Robinson, T. E., Jurson, P. A., Bennett, J. A., & Bentgen, K. M. (1988). Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: a microdialysis study in freely moving rats. Brain Research, 462, 211-222.
Rosen, J. B., & Davis, M. (1988). Enhancement of the acoustic startle by electrical stimulation of the amygdala. Behavioral Neuroscience, 102, 195-202.
Rosen, J. B., Hamerman, E., Sticoske, M., Glowa, J. R., & Schulkin, J. (1996). Hyperexciability: exaggerated fear-potentiated startle produced by partial amygdala kindling. Behavioral Neuroscience, 110, 43-50.
Rosen, J. B., Hitchcock, J. M., Sananes, C. B., Miserendino, M. J., & Davis, M. (1991). A direct projection from the central nucleus of the amygdala to the acoustic startle pathway: anterograde and retrograde tracing studies. Behavioral Neuroscience, 105, 817-825.
Rosen, J. B., & Schulkin, J. (1998). From normal fear to pathological anxiety. Psychological Review, 105, 325-350.
Salmon, P., Tsaltas, E., & Gray, J. A. (1988). Effects of lesions of the dorsal noradrenergic bundle on successive discrimination in the rat. Behavioral and Neural Biology(49), 152-164.
Sarnyai, Z., Hohn, J., G., S., & Penke, B. (1992). Critical role of endogenous corticotropin-releasing factor (CRF) in the mediation of the behavioral action of cocaine in rats. Life Sciences, 51, 2019-2024.
Schmajuk, N. A., Cox, L., & Gray, J. A. (2001). Nucleus accumbens, entorhinal cortex and latent inhibition: a neural network model. Behavioral Brain Research, 118, 123-141.
Schmidt, E. D., Schoffelmeer, A. N., De Vries, T. J., Wardeh, G., Dogterom, G., Bol, J. G., Binnekade, R., & Tilders, F. J. (2001). A single administration of interleukin-1 or amphetamine induces long-lasting increases in evoked noradrenaline release in the hypothalamus and sensitization of ACTH and corticosterone responses in rats. European Journal of Neuroscience, 1923-1930.
Schmidt, E. D., Tilders, F. J. H., Binnekade, R., Schoffelmeer, A. N. M., & De Vries, T. J. (1999). Stressor- or drug-induced sensitization of the corticosterone response is not critically involved in the long-term expression of behavioural sensitization to amphetamine. Neuroscience, 92, 343-352.
Schmidt, E. D., Tilders, F. J. H., Janszen, A. W. J. W., Binnekade, R., DeVries, T. J., & Schoffelmeer, A. N. M. (1995). Intermittent cocaine exposure causes delayed and long-lasting sensitization of cocaine-induced ACTH secretion in rats. European Journal of Pharmacology, 285, 317-321.
Segal, D. S. (1975). Behavioral and neurochemical correlates of repeated d-amphetamine administration. Advances in Biochemical Psychopharmacology, 13, 247-262.
Segal, D. S., & Kuczenski, R. (1987). Behavioral and neurochemical characteristics of stimulant-induced augmentation. Psychopharmacology Bulletin, 23, 417-424.
Segal, D. S., & Kuczenski, R. (1997). An escalating dose "binge" model of amphetamine psychosis: behavioral and neurochemical characteristics. Journal of Neuroscience, 17, 2551-2566.
Segal, D. S., & Mandell, A. J. (1974). Long-term administration of d-amphetamine: progressive augmentation of motor activity and stereotypy. Pharmacology, Biochemistry and Behavior, 2, 249-255.
Self, D. W., & Nestler, E. J. (1998). Relapse to drug-seeking: neural and molecular mechanisms. Drug and Alcohol Dependence, 51, 49-60.
Sills, T. L., & Fletcher, P. J. (1997). Fluoxetine attenuates morphine-induced locomotion and blocks morphine-sensitization. European Journal of Pharmacology, 337, 161-164.
Sills, T. L., Greenshaw, A. J., Baker, G. B., & Fletcher, P. J. (1999). Acute fluoxetine treatment potentiates amphetamine hyperactivity and amphetamine-induced nucleus accumbens dopamine release: possible pharmacokinetic interaction. Psychopharmacology, 141, 421-427.
Sinha, R., Catapano, D., & O''Malley, S. (1999). Stress-induced craving and stress response in cocaine dependent individuals. Psychopharmacology, 142, 343-351.
Sripada, S., Gaytan, O., Swann, A., & Dafny, N. (2001). The role of MK-801 in sensitization to stimulants. Brain Research Reviews, 35, 97-114.
Stewart, J., & Badiani, A. (1993). Tolerance and sensitization to the behavioral effects of drugs. Behavioural Pharmacology, 4, 289-312.
Stewart, J., & Vezina, P. (1988). Conditioning and behavioral sensitization. In P. W. Kalivas & C. D. Barnes (Eds.), Sensitization in the nervous system (pp. 207-224). Caldwell, NJ: Telford Press.
Strakowski, S. M., & Sax, K. W. (1998). Progressive behavioral response to repeated d-amphetamine challenge: further evidence for sensitization in humans. Biological Psychiatry, 44, 1171-1177.
Strakowski, S. M., Sax, K. W., Rosenberg, H. L., DelBello, M. P., & Adler, C. M. (2001). Human response to repeated low-dose d-amphetamine: evidence for behavioral enhancement and tolerance. Neuropsychopharmacology, 25, 548-554.
Strakowski, S. M., Sax, K. W., Setters, M. J., & Keck, P. E., Jr. (1996). Enhanced response to repeated d-amphetamine challenge: evidence for behavioral sensitization in humans. Biological Psychiatry, 40, 872-880.
Swerdlow, N. R., Koob, G. F., Cador, M., Lorang, M., & Hauger, R. L. (1993). Pituitary-adrenal axis responses to acute amphetamine in the rat. Pharmacology, Biochemistry and Behavior, 45, 629-637.
Szumlinski, K. K., Allan, M., Talangbayan, H., Tracey, A., & Szechtman, H. (1997). Locomotor sensitization to quinpirole: environment-modulated increase in efficacy and context-dependent increase in potency. Psychopharmacology, 134, 193-200.
Takahashi, L. K. (1996). Glucocorticoids and the hippocampus. Developmental interactions facilitating the expression of behavioral inhibition. Molecular Neurobiology, 13, 213-226.
Tilson, H. A., & Rech, R. A. (1973). Conditioned drug effects and absence of tolerance to d-amphetamine induced motor activity. Pharmacology, Biochemistry and Behavior, 1, 149-153.
Tzschentke, T. M., & Schmidt, W. J. (1998a). The development of cocaine-induced behavioral sensitization is affected by discrete quinolinic acid lesions of the prelimbic medial prefrontal cortex. Brain Research, 795, 71-76.
Tzschentke, T. M., & Schmidt, W. J. (1998b). Does the noncompetitive NMDA receptor antagonist dizocilpine (MK801) really block behavioural sensitization associated with repeated drug administration? Trends in Pharmacological Sciences, 19, 447-451.
Tzschentke, T. M., & Schmidt, W. J. (2000). Blockade of behavioral sensitization by MK-801: fact or artifact? A review of preclinical data. Psychopharmacology, 151, 142-151.
Ungerstedt, U., & Arbuthnott, G. W. (1970). Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Research, 24, 485-493.
Vezina, P., Kalivas, P. W., & Stewart, J. (1987). Sensitization occurs to the locomotor effects of morphine and the specific m opioid agonist, DAGO, administered repeatedly to the ventral tegmental area but not to the nucleus accumbens. Brain Research, 417, 51-58.
Vezina, P., & Stewart, J. (1984). Conditioning and place-specific sensitization of increases in activity induced by morphine in the VTA. Pharmacology, Biochemistry and Behavior, 20, 925-934.
Vezina, P., & Stewart, J. (1989). The effect of dopamine receptor blockade on the development of sensitization to the locomotor activating effects of amphetamine and morphine. Brain Research, 499, 108-120.
Wachtel, S. R., & de Wit, H. (1999). Subjective and behavioral effects of repeated d-amphetamine in humans. Behavioral Pharmacology, 10, 271-281.
Walker, D., & Davis, M. (1997). Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. Journal of Neuroscience, 17, 9375-9383.
Wang, Y. C., Tsai, S. J., Huang, Y. H., & Hsiao, S. (2001). Expression of amphetamine (AMPH) sensitization is dependent on treatment context: Behavioral and neural effects in rats. Society for Neuroscience Abstract, 27, 77.11.
Weiss, S. R. B., Post, R. M., Costello, M., Nutt, D. J., & Tandeciarz, S. (1990). Carbamazepine retards the development of cocaine-kindled seizures but not sensitization to cocaine-induced hyperactivity. Neuropsychopharmacology, 3, 273-281.
Weiss, S. R. B., Post, R. M., Pert, A., Woodward, R., & Murman, D. (1989). Context-dependent cocaine sensitization: differential effect of haloperidol on development versus expression. Pharmacology, Biochemistry and Behavior, 34, 655-661.
Wennemer, H. K., & Kornetsky, C. (1999). Fluoxetine blocks expression but not development of sensitization to morphine-induced oral stereotypy in rats. Psychopharmacology, 146, 19-23.
Wise, R. A., & Bozarth, M. A. (1987). A psychomotor stimulant theory of addiction. Psychological Review, 94, 469-492.
Wolf, M. E. (1998). The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Progress in Neurobiology, 54, 679-720.
Wolf, M. E., Dahlin, S. L., Hu, X.-T., Xue, C.-J., & White, K. (1995). Effects of lesions of prefrontal cortex, amygdala, or fornix on behavioral sensitization to amphetamine: comparison with N-methyl-D-aspartate antagonists. Neuroscience, 69, 417-439.
Wolf, M. E., & Khansa, M. R. (1991). Repeated administration of MK-801 produces sensitization to its own locomotor stimulant effects but blocks sensitization to amphetamine. Brain Research, 562, 164-168.
Wolf, M. E., White, F. J., Nassar, R., Brooderson, R. J., & Khansa, M. R. (1993). Differential development of autoreceptor subsensitivity and enhanced dopamine release during amphetamine sensitization. Journal of Pharmacology & Experimental Therapeutics, 264, 249-255.
Wolf, M. E., & Xue, C.-J. (1998). Amphetamine and D1 dopamine receptor agonists produce biphasic effects on glutamate efflux in rat ventral tegmental area: modification by repeated amphetamine administration. Journal of Neurochemistry, 70, 198-209.
Wolf, M. E., & Xue, C.-J. (1999). Amphetamine-induced glutamate efflux in the rat ventral tegmental area is prevented by MK-801, SCH 23390, and ibotenic acid lesions of the prefrontal cortex. Journal of Neurochemistry, 73, 1529-1538.
Xue, C. J., Ng, J. P., Li, Y., & Wolf, M. E. (1996). Acute and repeated systemic amphetamine administration: effects on extracellular glutamate, aspartate, and serine levels in rat ventral tegmental area and nucleus accumbens. Journal of Neurochemistry, 67, 352-363.
Yehuda, R., & Antelman, S. M. (1993). Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biological Psychiatry, 33, 479-486.
Yen, S. S., & Laughlin, G. A. (1998). Aging and the adrenal cortex. Experimental Gerontology, 33, 897-910.
Yoshikawa, T., Shibuya, H., Kaneno, S., & Toru, M. (1991). Blockade of behavioral sensitization to methamphetamine by lesion of hippocampo-accumbal pathway. Life Science, 48, 1325-1332.
Yoshikawa, T., Watanabe, A., Shibuya, H., & Toru, M. (1993). Involvement of the fimbria fornix in the initiation but not in the expression of methamphetamine-induced sensitization. Pharmacology, Biochemistry and Behavior, 45, 691-695.
Zhang, J., Engel, J. A., Soderpalm, B., & Svensson, L. (1998). Repeated administration of amphetamine induces sensitisation to its disruptive effect on prepulse inhibition in the rat. Psychopharmacology, 135, 401-406.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 游光昭(民 82)。工藝/科技教育教學的基本精神-問題解決法。中學工藝教育月刊,26(1),8-12。
2. 陳威志(民 88)。培養成人科技素養落實終生科技教育理念。生活科技教育月刊,32(2),11-16。
3. 張玉山、施能木(民 82)。美國科技教育理念的探討-從Jackson’s Mill到Jackson’s Mill II。中學工藝教育月刊,26(1),13-19。
4. 張玉山(民 84)。問題解決教學活動之理論與實例。中學工藝教育月刊,28(8),23-32。
5. 張世彗(民 78)。創造性問題解決的兒童觀。創造思考教育,1,34-41。
6. 唐偉成、江新合(民 87)。以問題解決為導向的教學理念與模式。屏師科學教育,8,12-28。
7. 洪文東(民 89)。從問題解決的過程培養學生的科學創造力。屏師科學教育,11,52-62。
8. 林國平(民 80)。立體造型之題解性質的探討。國教園地,39,39-50。
9. 林人龍(民 85)。中學生活科技教材發展的行為理論探討。中學工藝教育月刊,29(1),2-8。
10. 吳培安(民 84)。「問題解決」式的科技教育教學模式。教師之友,36(2),12-19。
11. 王春展(民 86)。專家與生手間問題解決能力的差異及其在教學上的啟示。教育研究資訊,5(2),80-92。
12. 廖居治(民 88)。九年一貫制之國民中小學科技教育內涵之探討。屏師科學教育,37-41。
13. 劉瑞圓(民 90)。課程統整與科技教育。科學教育,12-23。
14. 謝士英(民 83)。談國中新課程-生活科技。菁莪季刊,6(4),34-37。
15. 謝永輝(民 85)。科技的研究發展。中學工藝教育月刊,29(8),14-17。
 
系統版面圖檔 系統版面圖檔