(3.215.180.226) 您好!臺灣時間:2021/03/06 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇亭偉
研究生(外文):Ting-Wei Su
論文名稱:奈米結構金氧矽發光二極體之特性研究
論文名稱(外文):Metal-Oxide-Silicon Light Emitting Diodes with Nano-Structures
指導教授:林清富林清富引用關係
指導教授(外文):Ching-Fuh Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:125
中文關鍵詞:矽發光金氧矽發光二極體液相沉積奈米粒子濕蝕刻載子生命期頻率響應
外文關鍵詞:electroluminescencemetal-oxide-siliconlight emitting diodeliquid-phase depositionnano-particlewet etchingcarrier lifetimefrequency response
相關次數:
  • 被引用被引用:21
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的目的,在於發展以矽為基礎,能和現有矽電子元件整合在同一晶片上的光源,所使用的方法為利用氧化層上的奈米結構,產生載子侷限的效果來抑制矽表面上的SRH復合,以提高金氧矽發光二極體對應矽能隙的電激發光效率。
實驗上我們先以液相沉積法製作具有奈米結構的氧化層,成功的在矽晶圓上產生厚度低於100Å的超薄氧化層,表面粗糙度可達8.5Å,製成的金氧矽發光二極體,外部量子效率可達到2.110-6,而電激發光頻譜和快速熱氧化層元件完全一致,顯示出載子侷限成功的抑制了界面能階上的非發光性複合。
接著我們採用二氧化矽奈米粒子所形成的薄膜,作為金氧矽發光二極體的閘極氧化層,希望藉由直徑8~11nm奈米粒子來達到控制氧化層表面奈米結構的目標。量測到的外部量子效率最高可達1.010-5,顯示氧化層表面的奈米結構成功的提高了發光效率,而發光頻譜也維持相同,代表發光機制也沒有改變。
進一步我們希望在矽表面也產生奈米結構,以加強載子侷限的效果,然而受限於的TMAH的蝕刻機制,終究還是無法控制矽表面的奈米級粗糙度,觀察不到元件發光效率受矽表面蝕刻的影響。
最後以電激發光頻率響應量測金氧矽發光二極體內部的載子生命期,調變頻寬約為2k~8kHz,經由fitting可以得到載子的生命期約為20~80s。室溫下的載子生命期隨注入電流的增加而減短,經由fitting得到元件的內部量子效率已達10-1左右,顯示元件的少數載子注入效率及發光偵測效率過低。載子生命期在低溫下反而減短同時發光效率提昇,可見經由激子所產生的發光性復合機制已經在元件中佔有相當地位。
In this thesis, efforts were made to develop silicon-based light sources capable to be integrated with present silicon electronic devices on a single chip. Nano-structure on gate oxide was proposed to create the effect of carrier confinement, which is expected to enhance the efficiency of silicon band-edge electroluminescence (EL) from metal-oxide-silicon light emitting diode (MOS LED) by suppressing surface SRH recombination.
Nano-structure on gate oxide was first implemented by liquid-phase deposition (LPD) of SiO2, with thickness less than 100 Å and roughness around 8.5 Å. External quantum efficiency as high as 2.110-6 was achieved on MOS LED with LPD oxide, whose EL spectrum is identical to MOS LED with rapid thermal oxide (RTO).
Thin film formed with SiO2 nano-particles with 8~11 nm diameter was then used as gate oxide to control its nano-structure. External quantum efficiency as high as 2.110-6 was achieved with identical EL spectrum to other devices. Enhancement of EL efficiencies was attributed to carrier confinement created by nano-structure on gate oxide.
EL efficiency is expected to be further enhanced by nano-structure on silicon surface, but this nano-structure failed to be controlled by wet-etching with TMAH. Effect of silicon surface etching on EL efficiency was not observed.
Finally, EL frequency response was used to measure carrier lifetime inside MOS LED. Results revealed modulation bandwidths around 2~8 kHz and carrier lifetimes around 20~80 s. Shorter carrier lifetime was measured . Internal quantum efficiency as high as 10-1 was estimated by fitting injection-level dependency of carrier lifetime inside MOS LED with nano-particle oxide. Shorter carrier lifetime and high EL efficiency were observed at lower temperature, indicating that radiative processes with excitons can’t be ignored in MOS LED.
第一章 引言
一. 動機 1-1
二. 利用載子侷限提高矽發光效率 1-6
第二章 金氧矽發光二極體特性的分析及量測
一. 簡介 2-1
二. 金氧矽發光二極體的電特性 2-2
三. 金氧矽發光二極體發光特性 2-6
四. 電激發光的溫度變化及時域響應 2-10
五. 結論 2-13
第三章 以液相沉積法成長金氧矽發光二極體閘極氧化層
一. 簡介 3-1
二. 元件製作 3-2
三. 以液相沉積法成長氧化層 3-2
四. 氧化層表面粗糙度 3-7
五. 金氧矽穿隧二極體電特性量測 3-10
六. 金氧矽穿隧二極體發光特性量測 3-15
七. 電激發光的溫度效應及時域響應 3-18
八. 討論 — 增強發光效率的機制 3-19
九. 結論 3-22
第四章 以二氧化矽奈米粒子薄膜作為金氧矽發光二極體閘極氧化層
一. 簡介 4-1
二. 二氧化矽奈米粒子薄膜及金氧矽發光二極體元件製作 4-2
三. 金氧矽發光二極體的電特性及發光特性 4-4
四. 奈米粒子元件特性的長期穩定度 4-6
五. 討論 — 發光效率隨時間變化的成因 4-10
六. 結論 4-12
第五章 以奈米粒子控制濕蝕刻在矽表面產生的奈米結構
一. 簡介 5-1
二. 材料特性 5-4
三. 表面形態分析 5-10
四. 矽晶圓表面蝕刻的效果 5-14
五. 金氧半發光二極體製作 5-20
六. 元件特性 5-21
七. 討論 — 蝕刻不足的原因 5-24
八. 結論 5-26
第六章 由頻率響應量測金氧矽發光二極體中少數載子的生命期
一. 簡介 6-1
二. 理論背景 6-2
三. 實驗架構及數據分析 6-6
四. 少數載子生命期隨少數載子濃度的變化 6-14
五. 少數載子生命期隨溫度的變化 6-20
六. 討論 — 內部和外部量子效率的差異,元件穩定性 6-24
七. 結論 6-27
第七章 總結
一. 回顧 7-1
二. 未來展望 7-4
[1] J. R. Haynes and W. C. Westphal, “Radiation resulting from recombination of holes and electrons in Silicon”, Phys. Rev. 101, (1956) 1676.
[2] D. Lockwood, “Light emission in silicon : from physics to devices”, Semiconductors and Semimetals, Vol. 49, San Diego, Academic Press.
[3] L. W. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface”, IEEE Electron Device Letters 20, (1999) 614.
[4] W. L. Ng, M. A. Lourenço, R. M. Gwilliam, et al., “An efficient room-temperature silicon-based light-emitting diode”, Nature 410, (2001) 192.
[5] M. A. Green, J. Zhao, A. Wang, P. J. Reece and M. Gal, “Efficient silicon light-emitting diodes”, Nature 412, (2001) 805.
[6] M. J. Chen, C. F. Lin, W. T. Liu, S. T. Chang, and C. W. Liu, ” Visible and band edge electroluminescence from indium tin oxide/SiO2/Si metal—oxide—semiconductor structures”, J. Appl. Phys. 89, (2001) 323.
[7] A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, et al., “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI Circuit”, IEEE Photon. Technol. Lett. 12, (2000) 1073.
[8] M. A. Sánchez-García, F. B. Naranjo, J. L. Pau, et al., “Ultraviolet electroluminescence in GaN/AlGaN single-heterojunction light-emitting diodes grown on Si(111)”, J. Appl. Phys. 87, (2000) 1569.
[9] H. Sirringhaus, N. Tessler and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers”, Science 280,(1998) 1741.
[10] S. M. Sze, “Microelectronic technology : challenges in the 21st century“, Handout for a lecture from S. M. Sze at NTU, 2001
[11] R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing”, Sensors and Actuators B 38-39,(1997) 13.
[12] D. K. Schroder, “Semiconductor material and device characterization”, 2nd Edition, New York, Wiley, 1998, p428.
[13] C. F. Lin, M. J. Chen, E. Z. Liang, W. T. Liu, and C. W. Liu, “Reduced temperature dependence of luminescence from silicon due to field-induced carrier confinement”, Appl. Phys. Lett. 78, (2000) 261.
[1] S. M. Sze, “Semiconductor devices, physics and technology”, New York, Wiley, 1985, p219.
[2] J. Lambe and S. L. McCarthy, “Light Emission from Inelastic Electron Tunneling”, Phys. Rev. Lett. 37,(1976) 923.
[3] C. W. Liu, S. T. Chang, M. J. Chen, and C. F. Lin, “Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes”, Appl. Phys. Lett., 77, (2000) 4347.
[4] A. Ghetti, C. T. Liu, M. Mastrapasqua and E. Sangiorgi, “Characterization of tunneling current in ultra-thin gate oxide”, Solid-State Electro. 44, (2000) 1523.
[5] W. C. Lee and C. Hu, “Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling”, IEEE Trans. Electron Devices 48, (2001) 1366.
[6] A. Ghetti, E. Sangiorgi, J. Bude, T. W. Sorsch and G. Weber, “Tunneling into interface states as reliability monitor for ultrathin oxides”, IEEE Trans. Electron Devices 47, (2000) 2358.
[7] C. H. Lin, B. C. Hsu, M. H. Lee and C. W. Liu, “A comprehensive study of inversion current in MOS tunneling diodes”, IEEE Trans. Electron Devices 48, (2001) 2125.
[8] C. F. Lin, C. W. Liu, M. J. Chen, M. H. Lee, and I. C. Lin, “Electroluminescence at Si band gap energy based on metal-oxide-silicon structures”, J. Appl. Phys. 87, (2000) 8793.
[9] M. J. Chen, E. Z. Liang, S. W. Chang, and C. F. Lin, “Model for band-edge electroluminescence from metal-oxide-semiconductor silicon tunneling diodes”, J. Appl. Phys. 90, (2001) 789.
[10] C. W. Liu, M. H. Lee, M. J. Chen, C. F. Lin, and M. Y. Chern, “Roughness-Enhanced Electroluminescence from Metal Oxide Silicon Tunneling Diodes“, IEEE Electron Device Letters 21, (2000) 601.
[11] C. W. Liu, S. T. Chang, M. J. Chen, and C. F. Lin, “Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes”, Appl. Phys. Lett., 77, (2000) 4347.
[12] C. F. Lin, M. J. Chen, E. Z. Liang, W. T. Liu, and C. W. Liu, “Reduced temperature dependence of luminescence from silicon due to field-induced carrier confinement”, Appl. Phys. Lett., 78, (2000) 261.
[13] M. J. Chen, C. F. Lin, W. T. Liu, S. T. Chang, and C. W. Liu, ” Visible and band edge electroluminescence from indium tin oxide/SiO2/Si metal—oxide—semiconductor structures”, J. Appl. Phys. 89, (2001) 323.
[14] C. W. Liu, C. H. Lin, M. H. Lee, S. T. Chang, Y. H. Liu, M. J. Chen, and C. F. Lin, “Enhanced reliability of electroluminescence from metal—oxide—silicon tunneling diodes by deuterium incorporation”, Appl. Phys. Lett., 78, (2001) 1397.
[15] M. J. Chen, C. F. Lin, M. H. Lee, S. T. Chang, and C. W. Liu, “Carrier lifetime measurement on electroluminescent metal-oxide-silicon tunneling diodes”, Appl. Phys. Lett., 79, (2001) 2264.
[16] 陳敏璋, “金屬-絕緣層-半導體穿隧二極體矽發光元件的研究”, 國立台灣大學光電工程研究所博士論文, 2001.
[17] J. I. Pankove, “Optical processes in semiconductor”, New Jersey, Prentice-Hall, 1971, p166.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔