(3.235.108.188) 您好!臺灣時間:2021/02/27 03:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊岳霖
論文名稱:氮砷化銦鎵/砷化鎵單量子井結構之螢光光譜與光調制反射光譜研究
論文名稱(外文):Photoluminescence and Phototreflectance characterization of InGaAsN/GaAs single quantum well
指導教授:詹國禎詹國禎引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:64
中文關鍵詞:氮砷化銦鎵單量子井螢光光譜光調制反射光譜
外文關鍵詞:InGaAsNsingle quantum wellphotoluminescencephotoreflectanceMOCVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
磷砷化銦鎵/磷化銦量子井結構目前普遍用於製作光纖通訊用雷射,因其波長可長達1.3μm及1.5μm。同時磷砷化銦鎵/磷化銦材料在異質接面上能夠做到完全的晶格匹配,故成長量子結構之品質能夠控制在非常好的情況。但是由於異質接面上能帶偏差(energy band offset)值太小,使得電子在傳導帶上量子侷限效應差,造成其特徵溫度(characteristic temperature)低,在使用操作上有相當大的限制。而一種新的材料:氮砷化銦鎵/砷化鎵量子井結構被提出,可以大幅提高能帶偏差值以加強量子侷限效應。另外藉由氮原子的微量摻入使得原有的砷化銦鎵導電帶能階分裂成E+及E-兩部分進而降低導電帶高度使得量子井發光波長增長。然而如同氮砷化銦藍光材料一樣,在砷化銦鎵材料內摻雜入微量的氮原子在現有的磊晶技術上是一大挑戰。在分子束磊晶(MBE)製程上,氮原子的比例與量子井的結構品質控制已有初步的成果出現,但在金屬有機化學氣相沈積(MOCVD)製程上仍有相當的困難存在。然而金屬有機化學氣相沈積製程成長速度遠較分子束磊晶製程要來的快速,相對適合用於大量生產,故利用金屬有機化學氣相沈積製程成長InGaAsN仍然持續的發展中。
本論文以量測溫變光調制反射光譜術(PR)及溫變螢光光譜(PL)來探討以金屬有機化學氣相沈積製程下不同溫度製作之砷化銦鎵/砷化鎵及氮砷化銦鎵/砷化鎵單量子井結構之光學特性。並比較在相同的砷化銦鎵成分下,摻雜氮原子對於量子井內電子量子躍遷能量的關係。在光調制反射光譜中發現,氮原子的摻入反而使得量子井內電子躍遷能量變大,而非預期中的縮小。而在螢光光譜也發現相同的現象,同時在低溫成長的樣品(C02211)觀察到兩個能量低於量子躍遷能量的螢光特徵,而其發光機制也在文內探討。

InGaAsP/InP quantum well structures are used to fabricate the laser devices for fiber communication application because the wavelength range is from 1.3μm to 1.5μm. In addition, the lattice match of InGaAsP/InP heterojunction can be achieved so the quality of quantum well can be well controlled. But the small band offset of InGaAsP/InP causes the low characteristic temperature due to the poor electron confinement in quantum well. A new material system, InGaAsN/GaAs, was reported to improve the weakness. With nitrogen doped, the interaction of highly localized N states with the extended states of the semiconductor matrix leads to the formation of two conduction subbands E- and E+. The wavelength emitted from InGaAsN/GaAs quantum well will increase to 1.3μm.
As InGaN material, however, it is a challenge for the modern eputaxy growth techniques to control the nitrogen composition and distribution in InGaAs. In molecular beam epitaxy (MBE) growth process, the control of the nitrogen composition and the quality of quantum wells has started the first step. There are still some difficulties in metal-organic chemical vapor deposition (MOCVD) process. The growth rate of MOCVD is more rapid than that of MBE so MOCVD process is more suitable for mass fabrication. Therefore, InGaAsN grown by MOCVD is still under development.
In this thesis, we measured the temperature-dependent photoreflectance (PR) spectra and temperature-dependent photoluminescence (PL) spectra of In0.3Ga0.7AsN/GaAs and In0.3Ga0.7As0.998N0.002/GaAs single quantum well grown by MOCVD and discussed the optical properties of the samples. On the condition of the same In and Ga composition, we compared the electron transition energy in quantum well with and without nitrogen atoms. In PR spectra, the transition energy was enlarged with doped nitrogen and the same phenomena was also found in PL spectra. Moreover, we observed two unusual features obvious below the transition energy in PL spectra of lower growth temperature sample C02211.

Contents
摘要……………………………………………………………………...I
Abstract………………………………………………………………..II
Contents……………………………………………………………....IV
Figure captions and index…...…………………………………….V
Table legends and index……..…………………………………...VIII
Chapter1 Introduction………………………………………….….1
Chapter2 Background of fields
2.1 Semiconductor optics………………………………………7
2.2 Modulation spectra………………………………………..13
2.3 Photoluminescence………………………………………..21
Chapter3 Experiments
3.1 Sample preparation………………………………………..25
3.2 Photoreflectance system…………………………………..26
3.3 Photoluminescence system………………………………..27
Chapter4 Results and discussion
4.1 Photoluminescence………………………………………..32
4.2 Photoreflectance…………………………………………..36
4.3 Future works………………………………………………39
Chapter5 Conclusion………………………………………………62
References…………………………………………………………….64
Figure caption and index
Fig. 1.1. Calculated dispersion relationships for E- and E+ subbands (solid lines) of the GaAs0.99N0.01 using band anticrossing model. The dotted line represents the unperturbed energies of N level and GaAs………………………………………...6
Fig. 2.1. Schematic energy band diagram of a GaAs SIN+ structure with arbitrary distribution of surface state………………...24
Fig. 3.1. Schematic representation of single quantum well grown by MOCVD…………………………………………………...28
Fig. 3.2. Schematic block diagram of photoreflectance experiment apparatus.………………………………………………….29
Fig. 3.3. Schematic block diagram of photoluminescence experiment apparatus…………………………………………………..30
Fig. 4.1. Photoluminescence spectra for C03041 and C03042 at 11 K.
……………………………………………………………..40
Fig. 4.2. Photoluminescence spectra for C01234 and C02211 at 11 K. ……………………………………………………………..41
Fig. 4.3(a) Measured PL spectrum of C03041 and the fitting curve by a Gaussian function for the experiment data at 11K……… ..42
Fig. 4.3(b) Measured PL spectrum of C03042 and the fitting curve by a Gaussian function for the experiment data at 11K……… ..42
Fig. 4.3(c) Measured PL spectrum of C01234 and the fitting curve by a Gaussian function for the experiment data at 11K……… .43
Fig. 4.3(d) Measured PL spectrum of C2211 and the fitting curve by a Gaussian function for the experiment data at 11K……… ..43
Fig. 4.4(a). Temperature dependence of the PL peak energies for C03041. The squares are the experimental data and the solid line is the fitting curve using Varshini equation………………………44
Fig. 4.4(b). Temperature dependence of the PL peak energies for C03042. The squares are the experimental data and the solid line is the fitting curve using Varshini equation………………………45
Fig. 4.4(c). Temperature dependence of the PL peak energies for C01234. The squares are the experimental data and the solid line is the fitting curve using Varshini equation……………………....46
Fig. 4.4(d). Temperature dependence of the PL peak energies for C02211. The squares are the experimental data and the solid line is the fitting curve using Varshini equation………………………47
Fig. 4.5(a). Photoreflectance spectra for C03041, C03042, and C03043 at 11 K………………………………………………………...48
Fig. 4.5(b). Photoreflectance spectra for C01234 and C02211 at 11 K.
……………………………………………………………..49
Fig. 4.6(a) Measured PR spectrum of C03041 and the fitting curve by a first derivative function form of Gaussian function for the experiment data at 11K……………………………………50
Fig. 4.6(b) Measured PR spectrum of C03042 and the fitting curve by a first derivative function form of Gaussian function for the experiment data at 11K……………………………………50
Fig. 4.6(c) Measured PR spectrum of C01234 and the fitting curve by a first derivative function form of Gaussian function for the experiment data at 11K……………………………………51
Fig. 4.6(d) Measured PR spectrum of C02211 and the fitting curve by a first derivative function form of Gaussian function for the experiment data at 11K……………………………………51
Fig. 4.7. Temperature dependence of PR spectra peak energies forC03041, C03042, C03043, C01234, and C02211 respectively………………………………………………..52
Fig. 4.8(a). The energy characteristics comparison between PR and PL spectra for C03041 at 11 K. The solid circle is PL data and the hollow triangle is PR data……………………………..53
Fig. 4.8(b). The energy characteristics comparison between PR and PL spectra for C03042 at 11 K. The solid circle is PL data and the hollow triangle is PR data……………………………..54
Fig. 4.8(c). The energy characteristics comparison between PR and PL spectra for C01234 at 11 K. The solid circle is PL data and the hollow triangle is PR data……………………………..55
Fig. 4.8(d). The energy characteristics comparison between PR and PL spectra for C02211 at 11 K. The solid circle is PL data and the hollow triangle is PR data……………………………..56
Table caption and index
Table 3.1. In and N composition, growth temperature, and structure type of all samples………………………………………...31
Table 4.1. Results summary of the Gaussian function fitting for photoluminescence spectra of the four samples with single quantum well structure at different temperature…………..57
Table 4.2. The PL fitting results summary of the coefficients, Eg(0), α, β, using Varshini expression about the temperature dependence………………………………………………...58
Table 4.3 The photoreflectance feature fitting results summary using first derivative fitting function. The parameters of FDFF are energy E and broaden parameter Γ...………………………59
Table 4.4. The calculational results and experiment results of epi-layer and single quantum well…………………………………..60
Table 4.5. The PR fitting results summary of the coefficients, Eg(0), α, β, using Varshini expression about the temperature dependence………………………………………………...60
Table 4.6. The energy comparison between PR and PL spectra at 11K. For lack of high power density, the PL spectrum could not be obtained at low and room temperature…………………….61

References
1. N. K. Dutta and R. J. Nelson, Appl. Phys. Lett. 38, 407 (1981).
2. M. Yano, H. Nishi, and M. Tukusagawa, J. Appl. Phys. 52, 3172 (1981).
3. M. Kondow, K. Nishi, T. Kitatani, S. Watahiki, and Y. Yazawa, Jpn. J. Appl. Phys.,Part 1 35, 1273 (1996).
4. K. Uesugi, N. Marooka, and I. Suemune, Appl. Phys. Lett. 74, 1254 (1999).
5. C. Skierbiszewski, P.Perlin, P. Wisniewski, W. Knap, and T. Suski, Appl. Phys. Lett. 76, 2409 (2000)
6. M. C. Larson, M. Kondow, T. Kitatani, K. Nakahara, K. Tamura, H. Inoue, and K. Uomi, IEEE Photon. Technol. Lett., 10, 188 (1998).
7. Z. Pan, L. H. Li, W. Zhang, Y. W. Lin, and R. H. Wu, Appl. Phys. Lett. 77, 1280 (2000).
8. M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, M. Asif Khan, and Q. Chen, Appl. Phys. Lett. 69, 2837 (1996).
9. H. P. Xin and C. W. Tu, Appl. Phys. Lett. 72, 2442 (1998).
10. H. P. Xin, K. L. Kavanagh, Z. Q. Zhu, and C. W. Tu, Appl. Phys. Lett. 74, 2337 (1999).
11. X. Yang, F. B. Heroux, M. J. Jurkovic, and W. I. Wang, J. Vac. Sci. Tech. B, 17, 1144 (1999).
12. E. Tournie, M.-A. Pinault, S. Vezian, J. Massies, and O. Tottereau, Appl. Phys. Lett. 77, 2189 (2000).
13. M.-A. Pinault and E. Tournie, Appl. Phys. Lett. 78, 1562 (2001).
14. H. Ch. Alt, A. Yu. Egorov, H. Riechert, B. Wiedemann, J. D. Meyer, R. W. Michelmann, and K. Bethge, Physica B, 302-303, 282 (2001).
15. A. Polimeni, M. Capizzi, M. Geddo, M. Fischer, M. Reinhardt, and A. Forchel, Appl. Phys. Lett. 77, 2870 (2000).
16. F. H. Pollak and H. Shen, Mat. Sci. and Eng., R10, 275 (1993).
17. O. J. Glembocki, B. V. Shanabrook, N. Bottka, W. T. Beard, J. Comas, Appl. Phys. Lett. 46, 970 (1985).
18. F. H. Pollak, Proc. Soc. Photo-Optical Instrum. Eng. 276, 142 (1981).
19. F. H. Pollak, J. Vac. Sci. Tech. B 11, 1710 (1993).
20. C. F. Klingshirn, Semiconductor Optics, (Springer, Berlin, 1995).
21. W. C. Lindsey and M. K. Simon, Phase-locked loops & their application, (IEEE Press, New York, 1997).
22. M. Cardona, Modulation Spectroscopy, (Academic Press, New York and London, 1969).
23. D. E. Aspnes, in Handbook on Semiconductors, edited by T. S. Moss (North-Holland, New York, 1980).
24. B. O. Seraphin and B. Bottka, Phys. Rev. 145, 628 (1966).
25. F. H. Pollak and H. Shen, J. Cryst. Growth, 98, 53 (1989).
26. B. V. Shanabrook, O. J. Glembocki, and W. T. Beard, Phys. Rev. B 35, 2540 (1987).
27. H. Shen, M. Dutta, R. Lux, W. Buchwald, L. Fotiadis, and R. N. Scaks, Appl. Phys. Lett. 59, 321 (1991).
28. W. Heitler, The Quantum Theory of Radiation (Oxford Univ. Press, Oxford 1954).
29. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag Berlin Heidelberg, 1996).
30. H. P. Xin and C. W. Tu, Appl. Phys. Lett. 72, 2442 (1998).
31. M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, M. Asif Khan, and Q. Chen, Appl. Phys. Lett. 69, 2837 (1996).
32. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996)
33. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997).
34. Yong-Hong Cho, G. G. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370(1998).
35. M. Hetterich, M. D. Dawson, A. Yu. Egorov, D. Bernklau, and H. Riechert, Appl. Phys. Lett. 76, 1030 (2000).
36. S. Francoeurm S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, Appl. Phys. Lett. 75, 1538 (1999).
37. M. R. Gohale, J. Wei, H. Wang, and S. R. Forrest, Appl. Phys. Lett. 74, 1287 (1999).
38. D. Ouadjaout and Y. Marfaing, Phys. Rev. B 41, 12096 (1990).
39. A. Ait-Ouali, R.-F. Yip, J. L. Brebner, and R. A. Masut, J. Appl. Phys. , 3153 (1998).
40. E. Cohen, and M. D. Sturge, Phys. Rev. B, 25, 3828 (1982).
41. B. Halperin and M. Lax, Phys. Rev. 148, 772 (1996).
42. A. H. Kachare, W. G. Spizer, A. Kahan, F. K. Euler, T. A. Whatley, J. Appl. Phys. 53, 4393 (1983).
43. Z. Pan, L. H. Li, W. Zhang, Y. W. Lin, R. H. Wu, Appl.Phys. Lett. 77, 214 (2000).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3. 郭重吉 (1992): 從建構主義的觀點探討中小學數理教學的改進。 科學發展月刊, 20(5),548-570。
2. 4. 郭重吉 (1997):迎接二十一世紀的科學教育。教學科技與媒體,33, 3-11。
3. 8. 許正妹、張奕華 (2001):以Inspiration軟體建立概念圖及其在教學上之應用。教學科技與媒體,58,67-79。
4. 10. 邱貴發 (1998):網路世界中的學習 : 理念與發展。教育研究資訊, 6(1),20-27。
5. 13. 陳年興、曾建翰 (1997):全球資訊網上Web-Title之製作。遠距教育,2,12-21。
6. 14. 陳德懷 (1996):智慧型電腦輔助學習系統的研究與發展。科學發展月刊, 23(5),456-468。
7. 21. 黃振豊 (1997):Internet在建構主義教學上所扮演的角色。教育資料與研究,18,38-40。
8. 22. 唐文華 (1998):網路小學虛擬教室建立方法研究。遠距教育,5,5-18。
9. 23. 莊淑閔、洪世家 (1998):WWW上居家學習模式之建構 --- 以中小學教師在職進修為例。遠距教育,6,53-58。
10. 27. 鄭晉昌 (1993):自「情境學習」的認知觀點探討電腦輔助教學中教材內容的設計 — 從幾個學科教學系統談起。教學科技與媒體,12,3-14。
11. 28. 鄭安佑、陳韋宏、羅光宏、謝文雄、陳信良(1997):課程隨選系統設計。遠距教育,2,40-46。
12. 29. 楊家興 (1998):電話教室教學的研究。遠距教育,7,38-48。
13. 30. 張靜嚳 (1995):何謂建構主義。建構與教學。第三期。
14. 32. 張基成 (1997):電子績效支援系統之建構。視聽教育雙月刊,38(7),20-27。
15. 33. 張家倩、楊國德 (1998):全球資訊網自學式課程之先導研究。遠距教育,7,49-59。
 
系統版面圖檔 系統版面圖檔