(54.236.58.220) 您好!臺灣時間:2021/03/01 00:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳耀麟
研究生(外文):Yaw-Lin Chen
論文名稱:大屯火山區溫泉水之化學成分及其對河水之影響
論文名稱(外文):Chemical Compositions of Hot Spring Waters in the Tatun Volcanic Area and Their Influence on Stream Waters
指導教授:羅煥記羅煥記引用關係
指導教授(外文):Huann-Jih Lo
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:216
中文關鍵詞:大屯火山區溫泉河水化學成分硫同位素
外文關鍵詞:Tatun Volcanic areaspringstream waterchemical compisitionsulfur isotope
相關次數:
  • 被引用被引用:19
  • 點閱點閱:880
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:161
  • 收藏至我的研究室書目清單書目收藏:5
大屯火山區之溫泉依照其水中Cl-/SO4-2及Na+/Ca+2之離子比值可以分成沉積岩區溫泉(比值皆大於1)及火山岩區溫泉(比值皆小於1)兩大類。本區之溫泉水化學成分濃度隨溫泉出露地點(空間)及時間而有明顯差異。造成空間上之變異的原因主要有二:第一,火山岩區與沉積岩區溫泉水之化學成分供應源不同;第二,各溫泉區之火山氣體之流量,母岩受蝕變作用程度以及其礦物組成和比例都因地而異。時間上之變化主要與地表附近淺循環天水有關。
沉積岩區溫泉水之硫同位素比值落在沉積岩範圍內,尤其與海相沉積岩特別吻合,顯示本區溫泉水之含水層應在沉積岩(五指山層)之中,而溫泉水主要是由較深之五指山層地下熱水與地表附近之天水混合而成。
火山岩區溫泉水之硫同位素比值與火山岩之硫相當接近,顯示其溫泉水之含水層在火山岩中。固結較疏鬆之火山碎屑岩可能為本區火山岩中之主要含水層,所以溫泉分布大多集中在火山碎屑岩大量出露之大屯火山區西南部分。由於火山岩中之含水層可能主要由天水經由許多不同層的火山碎屑岩通道補注,因為影響之時間不同,所以火山岩區溫泉水之化學成分與採樣前不同時間之降雨量有良好之相關性。
火山岩區溫泉水之化學成分主要由火山氣體及火山岩提供。岩漿源火山氣體一方面溶解在水中,提供了SO4-2及Cl-;另一方面提供熱,造成酸性熱液,促進火山岩之蝕變作用。Na+、K+、Mg+2、Ca+2、Al+3及Si+4 等成分,便是由安山岩蝕變作用淋溶出來。
沉積岩區溫泉水之化學成分之供應源與火山岩區者不同。其硫同位素比值較接近源自於沉積岩的硫,因此,除了岩漿源之火山氣體溶解產生SO4-2及Cl-,應有其他來源供應這些陰離子。另外,五指山層含約2~5%之流紋岩塊,這些岩塊受酸性熱液作用,應為沉積岩區溫泉水陽離子成分主要來源。另外,地層滷水也可能提供溫泉水部分之化學成分。而金山附近溫泉水之化學成分應有部分來自海水。
北磺溪、南磺溪與雙溪之流域內皆有溫泉出露,尤其在河水TDCC濃度較高之採樣點附近皆有大量溫泉出露,而且溫泉水與河水化學成分之離子濃度比皆落在相同區域,顯示河水之化學成分主要由溫泉所供應。三條河流之河水化學成分濃度分布型態截然不同,北磺溪為中下游明顯降低,南磺溪為中下游明顯增高,而雙溪為下游略為增高之分布型態,這主要是因為在各流域中溫泉之出露位置與水化學性質不同所導致。另外,北磺溪與南磺溪之河水化學成分明顯比雙溪河水化學成分要高出許多,此乃由於北磺溪與南磺溪流域內之溫泉數目及出水量皆較高,而雙溪僅有冷水坑溫泉注入,故河水化學成分濃度上明顯較低。
According to the ratios of Cl-/SO4-2 and Na+/Ca+2, the springs in the Tatun volcanic area of northern Taiwan are classified into volcanic (both ratios <1) and sedimentary (both ratios >1) types. Chemical concentrations of the spring waters show variations with both time and space. Spatial variations are ascribed to two factors. First, the spring waters of the volcanic type are mainly supplied from volcanic gases and andesitic rocks, while those of the sedimentary one are from volcanic gases, rhyolitic pebbles and brines in the Wuchihshan Formation and seawater. Secondly, field observations show that the flux of volcanic gases and the degree of alteration of rocks vary from spring to spring. On the other hand, temporal variations may be attributed to the contribution of different amounts of meteoric water during different rain events.
The values of d34S of the spring waters of the sedimentary type are similar to those of sedimentary materials and imply that reservoirs of these springs may be in the sedimentary rocks. Ionic ratios between these spring water and subsurface hot waters in the Wuchihshan Formation fall in a narrow range, suggesting a simple mixing of the subsurface hot water with water of meteoric origin in the shallow depth.
On the other hand, the values of d34S of the spring waters of the volcanic type are similar to those of volcanic materials and suggest that reservoirs of these springs may be in the volcanic rocks. Since most of the springs appear in pyroclastic rocks, it is reasonable to assume that the pyroclastic rocks could be the most potential reservoirs for the springs of the volcanic type because the pyroclastic rocks are loosely consolidated and are generally considered to be more permeable than massive lava flows. Reservoirs in the volcanic rocks are mainly supplied from meteoric water which runs through different paths taking different time to contribute to the springs.
The volcanic gases may dissolve in water to contribute chemical components such as SO4-2 and Cl- to the spring reservoirs and may heat up the spring waters as well. Such hot acidic waters may act as major liquid media for hydrothermal alteration of the volcanic rocks. Chemical components such as Na+, K+, Mg+2, Ca+2, Al+3 and Si+4 etc. may release to the spring reservoirs during the hydrothermal alteration of the volcanic rocks in acidic fluids as revealed by laboratory studies.
The values of d34S of the spring waters of the sedimentary type suggest that there are other sources except volcanic gases contributing anions. It is considered that their cations may essentially be released from the hydrothermal alteration of rhyolitic pebbles in the Wuchihshan Formation. Brines in the sedimentary rocks may also be the source supplying chemical components. Moreover, seawater may also contribute to the spring waters of Chingshan and Dapu.
Distribution patterns of average chemical concentrations among the stream waters are certainly quite different. In NH (Nanhuang-Hsi), average chemical concentrations increase from the up- to down-stream with an abrupt change in the middle-stream. As to BH (Beihuang-Hsi), a generally down-stream-ward decrease of average chemical concentrations of the stream water is apparent. On the contrary, a generally down-stream-ward increase of average chemical concentrations occurs in SH (Swang-Hsi). The discrepancies may essentially be due to the distribution of hot springs and the chemical nature of hot spring waters in each stream system.
It is also interesting to see that average chemical concentrations are greatly higher in both NH and BH than in SH. In the area, a great number of hot springs are distributing in NH and BH, but they are rare in SH stream systems. Consequently, it is easy to see that average chemical concentrations are greatly higher in both NH and BH than in SH stream waters.
目 錄
第一章 緒論---------------------------------------------------1
第一節 前言--------------------------------------------------------1
1-1-1 溫泉之定義--------------------------------------------------1
1-1-2 溫泉之形成條件--------------------------------------------1
1-1-3 溫泉之種類--------------------------------------------------2
第二節 大屯火山區之溫泉-----------------------------------3
1-2-1大屯火山區之地質與構造---------------------------------3
1-2-2 大屯火山區之溫泉與噴氣孔-----------------------------5
第三節 陽明山國家公園區之河流水文特徵----------7
第四節 前人研究----------------------------------------------11
1-4-1 溫泉水化學成分及相關之研究------------------------11
1-4-2 河水化學成分及相關之研究---------------------------14
第五節 研究目的----------------------------------------------14
第二章 研究方法-----------------------------------------16
第一節 野外調查及採樣工作-----------------------------16
2-1-1 野外調查---------------------------------------------------16
2-1-2 現地測量---------------------------------------------------16
2-1-3 採樣---------------------------------------------------------17
第二節 實驗室分析工作-------------------------------------17
2-3-1 水中陽離子分析------------------------------------------17
2-3-2 水中陰離子分析------------------------------------------22
2-3-3 硫同位素分析---------------------------------------------25
第三章 野外調查及採樣點描述-----------------27
第一節 溫泉區之野外描述----------------------------------27
3-1-1 溫泉區之野外調查---------------------------------------27
3-1-2 火山岩區溫泉與河流之關係---------------------------31
第二節 河流採樣點之野外描述---------------------------33
3-2-1 北磺溪之採樣點------------------------------------------33
3-2-2 南磺溪之採樣點------------------------------------------34
3-2-3 雙溪之採樣點---------------------------------------------35
第四章 研究結果-----------------------------------------36
第一節 溫泉水主要化學成分逐月分析結果----------36
4-1-1 出露於沉積岩區溫泉之主要化學成分分析結果---36
4-1-2 出露於火山岩區溫泉之主要化學成分分析結果---43
第二節 溫泉水硫同位素分析結果------------------------77
第三節 河水主要化學成分逐月觀測結果--------------78
4-3-1 北磺溪河水主要化學成分分析結果------------------78
4-3-2 南磺溪河水主要化學成分分析結果------------------93
4-3-3 雙溪河水主要化學成分分析結果--------------------112
第五章 討論------------------------------------------------131
第一節 溫泉水與河水主要化學成分之變化---------131
5-1-1 溫泉水化學成分之變化--------------------------------131
5-1-2 河水化學成分變化--------------------------------------133
第二節 天水與溫泉水之關係-----------------------------135
5-2-1 沉積岩區溫泉水與天水之關係-----------------------135
5-2-2 火山岩區溫泉水與天水之關係-----------------------136
第三節 溫泉水之含水層------------------------------------137
5-3-1 沉積岩區溫泉與火山岩區溫泉水中硫同位素比較-----------------------------------------------------------------137
5-3-2 沉積岩區溫泉水之含水層-----------------------------139
5-3-3 火山岩區溫泉水之含水層-----------------------------141
第四節 溫泉水主要化學成分之來源-------------------145
5-4-1 火山岩區溫泉水之化學成分來源--------------------145
5-4-2 沉積岩區溫泉水之化學成分來源--------------------146
5-4-3 大屯火山區溫泉水之形成模式-----------------------146
第五節 溫泉水與河水之關係-----------------------------146
第六章 結論------------------------------------------------157
參考文獻-------------------------------------------------------159
附錄
附錄一 溫泉水化學成分逐月分析結果----------------167
附錄二 河水化學成分逐月分析結果-------------------188
附錄三 濕期與乾期-------------------------------------------215
王文祥(1989)大屯火山群之火山學及核飛跡定年,國立台灣大學地質學系研究所碩士論文,共154頁。
王偉光、陳隆煇、孫若琥(1987)。大屯山地熱區熱水換質作用之地球化學研究,中國石油公司台灣油礦探勘總處,七十六年度專題研究報告,共46頁。
中央氣象局(1997)氣象觀測站(金山、鞍部及竹子湖)日雨量資料。
中央氣象局(1998)氣象觀測站(金山、鞍部及竹子湖)日雨量資料。
中央氣象局(1999)氣象觀測站(金山、鞍部及竹子湖)日雨量資料。
中央氣象局(2000)氣象觀測站(金山、鞍部及竹子湖)日雨量資料。
江漢全(1996)水質分析,三民書局,共499頁。
李文鐘、陳志賢(1957)北投及陽明山一帶溫泉初步調查報告,礦冶,第三卷,第1期,25-36頁。
何孝恆(2001)台灣北部地區大屯火山群火山噴氣來源之探討,國立台灣大學地質科學研究所碩士論文,共80頁。
何春蓀(1986)台灣地質概論及台灣地質圖說明書,經濟部中央地質調查所,共164頁。
阮斯堅(1990)陽明山南北磺溪源流區坡地水文之研究,國立台灣師範大學地理研究所碩士論文,共117頁。
宋聖榮(1990)台灣東部海岸山脈中段火山岩研究兼論北呂宋火山島弧的演變,國立台灣大學地質學研究所博士論文,共251頁。
孟昭彞、邵普澤、徐亮明(1965)大屯火山地熱區初步研究,礦業技術,地熱專刊,104-118頁。
莊文星(1992)台灣之火山活動與火成岩,國立自然科學博物館,共300頁。
莊文星、陳汝勤(1989)台灣北部火山岩之定年與地球化學研究,經濟部中地質調查所彙刊,第五號,125-166頁。
曹永敬(1994)濂洞溪鐵物種相位變化及重金屬銅錳鋅搬運入海過程之研究,國立台灣海洋大學海洋科學研究所碩士論文,共95頁。
陳佩芬、汪中和、何麗如(1990)台灣的氫氧同位素天水線,地質,第十卷,第1期,21~28頁。
陳信雄(1992)陽明山國家公園區內水資源之調查與利用規劃,陽明山國家公園管理處,共100頁。
陳雅雯(1998)淡水紅樹林地區孔隙水與沉積物之硫及其同位素研究,國立台灣大學地質學系學士論文,共32頁。
陳肇夏(1981)地熱地質與探勘,貞觀出版社,共115頁。
陳肇夏(1989)台灣的溫泉和地熱,地質,第九卷,第2期,327~340頁。
陳肇夏(1994)大地的氣息,陽明山國家公園管理處,共308頁。
張寶堂(1979)台灣地熱徵兆分布之特性,能源季刊,第九卷,第4期,75~85頁。
黃鑑水(1998)台灣地質圖(五萬分之一),圖幅第四號(台北),經濟部中地質調查所,第二版,共61頁。
黃鑑水、李錦發、劉桓吉(1991)台灣北部崁腳斷層之地質調查與探勘,經濟部中地質調查所彙刊,第7號,23-42頁。
崔尚斌(1973)大屯山區之氣候,文化大學地研所報告,第1期,80-117頁。
程楓萍(1987)陽明山國家公園水資源調查與利用規劃及管理,陽明山國家公園管理處,共178頁。
陽萬全(1980)大屯火山彙南坡面的水文研究,師大地理學研究報告,第4期,69-92頁。
陽萬全(1988a)台灣地區蒸發散量之探討,中等教育,第三十九卷,第2期,22-41頁。
陽萬全(1988b)陽明山國家公園水資源調查(I各流域水文特徵之調查研究),陽明山國家公園管理處,共76頁。
陽萬全(1989)陽明山國家公園水文特徵,中國地理學會,第17期,97-119頁。
彭宗仁、汪中和、劉聰桂(1992)臺北及宜蘭兩地區地表水與地下水穩定碳同位素組成之初步比較,地質,第十二卷,第2期,199-212頁。
劉康克、陳中華、謝越寧、江新春(1984)台北市大屯山地熱區碳氫氧同位素之研究,中央研究院地球科學研究所,研究報告ASIES-CR8401,共39頁。
鄭福田(1988)陽明山國家公園地熱噴汽對人體影響之調查研究,陽明山國家公園管理處,共73頁。
謝佩珊(2000)台灣地區溫泉與泥火山氣體來源初探,國立台灣大學地質科學研究所碩士論文,共77頁。
顏滄波(1955)台灣之溫泉,台銀季刊,第七卷,第2期,129-147頁。
環保署(1992)水質檢驗方法彙編,環境保護署,共94頁。
礦研所(1969)大屯火山群地熱探勘工作報告之一,經濟部聯合礦業研究所,報告90號,共63頁。
礦研所(1970)大屯火山群地熱探勘工作報告之二,經濟部聯合礦業研究所,報告102號,共86頁。
礦研所(1971)大屯火山群地熱探勘工作報告之三,經濟部聯合礦業研究所,報告111號,共48頁。
礦研所(1973)大屯火山群地熱探勘工作報告之四,經濟部聯合礦業研究所,報告126號,共78頁。
礦研所(1975)台灣地熱資源探勘工作報告之一,經濟部聯合礦業研究所,報告146號,共70頁。
礦研所(1978)大屯火山群地熱探勘工作報告之四,經濟部聯合礦業研究所,報告170號,共150頁。
Allard, P. (1983) The origin of hydrogen, carbon, sulfur, nitrogen and rare gases in volcanic exhalations- evidence from isotope geochemistry: In : Forecasting Volcanic Events : Elsevier, Amsterdam, 337-386.
Allen, E.T. and Day, A.L. (1935) The hot springs of the Yellowstone National Park: Carnegie Inst. Washington Pub., 466, 525pp.
Boumans, P.W.J.M. (1987a) Inductively Coupled Plasma Emission Spectroscopy — Part I: John Wiley & Sons, 584pp.
Boumans, P.W.J.M. (1987b) Inductively Coupled Plasma Emission Spectroscopy — Part II: John Wiley & Sons, 486pp.
Chambers, L.A. and Trudinger, P.A. (1979) Microbiological fractionation of stable sulfur isotopes: J. Geomicrobiology, 1, 249-293.
Chanton, J.P., Martens, C.S. and Goldhaber, M.B. (1987a) Biogeochemical cycling in an organic-rich coastal marine basin - 7 - Sulfur mass balance, oxygen uptake and sulfide retention: Geochim. Comochim. Acta, 51, 1187-1199.
Chanton, J.P., Martens, C.S. and Goldhaber, M.B. (1987b) Biogeochemical cycling in an organic-rich coastal marine basin — 8 — A sulfur isotope budget balanced by differential diffusion across the sediment-water interface: Geochim. Comochim. Acta, 51, 1201-1208.
Chen, C.H. and Wu, Y.J. (1971) Volcanic geology of the Tatun geothermal area, northern Taiwan: Proc. Geol. Soc. China, 14, 5-20.
Chen, C.H. (1975) Petrological and chemical study of volcanic rocks from Tatun Volcano Group: Proc. Geol. Soc. China, 18, 59-72.
Chen, C.H. and Yang, H.Y. (1984) Minerals paragenesis in the hydrothermal alteration of andesites, as exemplified by a geothermal well in the Tatun volcanic area, northern Taiwan: Proc. Geol. Soc. China, 27, 68-85.
Chen, P.Y. (1963) Rhyolite pebbles in the white sandstone of the Wuchihshan Formation of Taiwan: Proc. Geol. Soc. China, 6, 34-40.
Chen, Y.L., Lo, H.J., Yu, C.F., Shen, J.S., Song, S.R., Huang, S.C., Fang, J.N. and Lin I.C. (1999) Geochemical study of hot springs in the Tatun volcanic area: Annual Meeting of Geological Society of China, 37-39.
Cherng, F.P. (1979) Geochemical exploration of hot spring areas in Taiwan: Min. Metal., 22-4, 72-83.
Chu, C.J., Lee, C.T. and Teng, L.S. (1998) Structural features and Quaternary tectonics of the Chinshan Fault, Northern Taiwan: J. Geol. Soc. China, 41-1, 25-42.
Clift, P.D., Rose, E.F., Shimizu, N., Layne, G.D., Draut, A.E. and Regelous, M. (2001) Tracing the evolving flux from the subducting plate in the Tonga-Kermadec arc system using boron in volcanic glass: Geochim. Cosmochim. Acta, 65, 3347-3364.
Craig, H. (1966) Superheated steam and mineral-water interactions in the geothermal areas: Am. Geophys. Union Trans., 47, 204-205.
Craig, H., Boato, G. and White, D.E. (1956) Isotopic geochemistry of thermal waters: Natl. Acad. Sci., 400, 29-38.
Fang, J.N., Lo, H.J., Song, S.R., Chen, Y.L. and Chen, H.F. (1998) Hydrothermal alteration of andesitic rocks in sulfuric acid solution: Annual of Taiwan Museum, 41, 21-40.
Fenner, C.N. (1936) Bore-hole investigations in Yellowstone Park: J. Geol., 44-2, 225-315.
Fisher, R.V. and Schmincke, H.U. (1984) Pyroclastic Rocks: Berlin- Heidelberg, Springer-Verlag, 472pp.
Giggenbach, W.F. (1978) The isotopic composition of waters from the El Tatio geothermal field, Northern Chile: Geochim. Cosmochim. Acta, 42, 979-988.
Hague, A. (1911) Origin of the thermal waters of the Yellowstone Park: Bull. Geol. Soc. Amer., 22, 103.
Hajash, A. and Chandler, G.W. (1981) An experimental investigation of high-temperature interactions between seawater and rhyolite, andesite, basalt and peridotite: Contr. Min. Petrol., 78, 240-254.
de Hoog, J.C.M., Taylor, B.E. and van Bergen, M.J. (2001) Sulfur isotope systematics of basaltic lavas from Indonesia implications for the sulfur cycle in subduction zones: Earth Planet. Sci. Letters, 189, 237-252.
Hoefs, J. (1997) Stable Isotope Geochemistry: Berlin- Heidelberg, Springer-Verlag, 4th. edi., 241pp.
Johnson, E.L. (1986) Handbook of Ion Chromatography: Dionex Cor., 244pp.
Kono, T. (1929) On ingredients of Hokuto-Kei hot spring: J. Soc. Trop. Agri., 1-2, 172-181. (in Japanese).
Langmuir, D. and Melchior, D. (1985) The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from the Palo Duro Basin, Texas: Geochim. Cosmochim. Acta, 49, 2423-2432.
Muir, I.J. and Nesbitt, H.W. (1992) Controls on differential leaching of calcium and aluminum from labradorite in dilute electrolyte solutions: Geochim. Cosmochim. Acta, 56, 3979-3985.
Nogami, K. and Yoshida, M. (1995) Leaching rates of rock-forming components through acidic alteration: J. Volcanol. Geotherm. Res., 65(1-2), 41-49.
Okada, H., Yasuda, Y., Yagi, M. and Kai, K. (2000) Geology and fluid chemistry of the Fushime geothermal field, Kyushu, Japan: Geothermics, 29-2, 279-311.
Okamoto, Y. (1911) On a radioactive mineral found as crust under the hot spring water of Hokuto in Taiwan: J. Geol. Soc. Tokyo, 18-219, 19-26.
Pluta, I. and Zuber, A. (1995) Origin of brines in the Upper Silesian Coal Basin (Poland) inferred from stable isotope and chemical data: Applied Geochem., 10-4, 447-460.
Pooter, R.P.E., Varekamp J.C., Poreda, R.J., Van Bergen, M.J. and Kreulen, R. (1991) Chemical and isotopic compositions of volcanic gases from the east Sunda and Banda arcs, Indonesia: Geochim. Cosmochim. Acta, 55, 3795-3807.
Rowe Jr., G.L., Brantley, S.L. Fernandez, J.F. and Borgia, A. (1995) The chemical and hydrologic structure of Poas Volcano, Costa Rica: J. Volcanol. Geotherm. Res., 64, 223-267.
Sakai, H., Casadevall, T.J. and Moore, J.G. (1982) Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea volcano, Hawaii: Geochim. Cosmochim. Acta, 46, 729-738.
Sano, T., Hasenaka, T., Shimaoka, A., Yonezawa, C. and Fukuoka, T. (2001) Boron contents of Japan Trench sediments and Iwate basaltic lavas, Northeast Japan arc-estimation of sediment-derived fluid contribution in mantle wedge: Earth Planet. Sci. Letters, 186, 187-198.
Shieh, Y.N., Cherng, F.P. and Hoering, T.C. (1983) Oxygen and hydrogen isotope studies of meteoric and thermal waters in Taiwan: Memoir. Geol. Society China, 5, 127-140.
Song, S.R., Yang, T.F., Yeh, Y.H., Tsao, S.J. and Lo, H.J. (2000) The Tatun Volcano Group is active or extinct: J. Geol. Soc. China, 43-3, 521-534.
Spivack, A. and You, C.F. (1997) Boron isotopic geochemistry of carbonates and pore waters, Ocean Drilling Program Site 851: Earth Planet. Sci. Letters, 152, 113-122.
Sung, W. and Morgan, J.J. (1980) Kinetics and product of ferrous iron oxygenation in aqueous systems: Environ. Sci. Tech., 14, 561-568.
Vengosh, A., Starinsky, A., Kolodny, Y. and Chivas, A.D. (1991) Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel: Geochim. Cosmochim. Acta, 55, 1689-1695.
Wang, C.H. (1991) The stable isotopic compositions on geothermal waters of the Tatun volcanic area, Taiwan: Tech. Report, Inst. Earth Sci., Academia Sinica, 36pp.
White, D.E. (1957) Magmatic, connate and metamorphic waters: Geol. Soc. Amer. Bull., 68, 1659-1682.
Yang, C.H. and Chen, C.S. (1989) Application of the TEM method in the Chinshan fault area, Chinshan, Taiwan: Proc. Geol. Soc. China, 32-4, 369-381.
Yang, T.F., Sano, Y. and Song, S.R. (1999) 3He/4He ratios of fumaroles and bubbling gases of hot springs in Tatun Volcano Group, North Taiwan: Il Nuovo Cimento, 22(3-4), 281-286.
Zaback, D.A. and Pratt, L.M. (1992) Isotopic composition and speciation of sulfur in the Miocene Monterey formation-reevaluation of sulfur reacting during early diagenesis in marine environments: Geochim. Cosmochim. Acta, 56, 763-774.
Zobell, C.E. (1958) Ecology of sulfate-reducing bacteria: Prod. Monogr., 22, 12-25.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔