(3.237.178.91) 您好!臺灣時間:2021/03/07 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭寶聲
研究生(外文):Pau-Sheng Kuo
論文名稱:不同鋇鈦比對鈦酸鋇燒結行為微結構及電性之研究
論文名稱(外文):Effects of Ba/Ti Ratios on the Sintering Behavior, Microstructure and Dielectric Properties of BaTiO3 Ceramics
指導教授:段維新段維新引用關係
指導教授(外文):Wei-Hsing Tuan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:94
中文關鍵詞:鈦酸鋇鋇鈦比燒結微結構c/a 比例介電
外文關鍵詞:barium titanateBa/Ti ratiosinteringmicrostructurenickelc/a ratiodielectric
相關次數:
  • 被引用被引用:5
  • 點閱點閱:577
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:2
摘   要
本實驗利用固態反應法(solid-state reaction),經由起始粉末BaCO3及TiO2的原子比例的控制,在1100℃溫度下持溫煆燒2小時,製備出不同鋇鈦比(Ba/Ti ratio)的鈦酸鋇粉末。製備的不同鋇鈦比鈦酸鋇,在不同的溫度下,於空氣的環境中燒結,探討其燒結行為及燒結過程中微結構的變化,並探討鋇鈦比例的改變對其介電常數的影響。本實驗並於不同鋇鈦比的鈦酸鋇中添加不同體積分率的氧化鎳,在適當的還原氣氛下使氧化鎳還原成金屬鎳,進而探討還原後之金屬鎳對不同鋇鈦比鈦酸鋇試樣之c/a比例、電性及微結構的影響。
對於不同鋇鈦比的鈦酸鋇,在空氣中燒結時,鋇鈦比大於1的鈦酸鋇組成,經由XRD分析,發現有中間相Ba2TiO4的生成,燒結過程中晶粒呈現正常的成長現象,但不易獲得緻密的微結構。而鋇鈦比小於1的鈦酸鋇組成中,燒結溫度在超過其共晶溫度時,會有Ba6Ti17O40之高溫液相生成,使得此組成具有較佳的緻密化行為,微結構因此第二相的出現,而產生異常成長的現象,由於晶粒不正常的粗化現象及Ba6Ti17O40相的生成於晶界,使得此組成之介電常數下降。
氧化鎳的添加於不同鋇鈦比鈦酸鋇中,在還原氣氛下550℃煆燒2小時,可以將氧化鎳還原成金屬鎳。當燒結溫度在1290℃至1350℃時,相對密度隨添加量的增加而下降,金屬鎳含量的增加,會降低鈦酸鋇的c/a比例,並降低鈦酸鋇之晶粒大小,由於添加量增加時,減少導電金屬顆粒之間的距離,因而使得介電常數值增加。
目錄
第一章 前言…………………………...………………………………1
第二章 文獻回顧…………………...…………...……………………3
2-1 鈦酸鋇之合成…………………………………………….…………3
2-2 固態反應法………………………………………………………….4
2-2-1 煆燒的目的……………………………………………………….4
2-2-2 煆燒反應機構………………..…………………………………...5
2-3 A/B ratio 對鈦酸鋇之影響………………………………………….6
2-4 鈦酸鋇晶體結構及特徵…………………………………...………12
2-5 添加物對鈦酸鋇微結構及電性之影響…………………………...18
2-5-1 金屬鎳對鈦酸鋇之影響………………………………………...19
2-5-2 金屬鎳之特性…………………………………………………...20
第三章 實驗步驟………………………………..……….………….24
3-1.鈦酸鋇粉體之製備…………………………………………………24
3-1.1 實驗材料…………………………………………………………24
3-1.2 實驗步驟…………………………………………………………24
3-1.3 粉體的相鑑定……………………………………………………25
3-1.4 試片的成型、燒結……………………………………………….25
3-1.5 試片的相鑑定……………………………………………………27
3-1.6 SEM微結構觀察…………………………………………………27
3-1.7 密度的量測………………………………………………………28
3-1.7.1 視密度的量測………………………………………………….28
3-1.7.2 相對密度的量測……………………………………………….28
3-1.8 介電性質之量測…………………………………………………29
3-2 鈦酸鋇/鎳複合材料之製備………………………………………..30
3-2.1 實驗材料…………………………………………………………30
3-2.2 試片成型、燒結與加工…………………………………………30
3-2.3 試片相鑑定………………………………………………………31
3-2.4 SEM微結構觀察…………………………………………………31
3-2.5 密度的量測………………………………………………………31
3-2.5.1 視密度的量測………………………………………………….31
3-2.5.2 相對密度的量測……………………………………………….31
3-2.6 電性之量測………………………………………………………32
3-2.6.1 介電性質之量測…….…………………………………………32
3-2.6.1 絕緣電阻之量測…….…………………………………………32
第四章 結果與討論………………………………………………..35
4-1 粉體之熱分析……………………………………………………..35
4-1.1粉末DTA熱示差分析…………………………………………..35
4-1.2粉末TGA熱示差分析…………………………………………..35
4-2 粉體相鑑定………………………………………………………..36
4-3 試片相鑑定………………………………………………………..41
4-4 SEM微結構分析…………………………………………………..47
4-5 晶粒大小之量測…………………………………………………..55
4-6 密度之量測………………………………………………………..57
4-7 緻密化行為………………………………………………………..63
4-8 電性之量測………………………………………………………..67
4-9 鈦酸鋇/鎳複合材之XRD相鑑定.………………………………..71
4-10 鈦酸鋇/鎳複合材之晶格常數比值(c/a ratio)..…………………..74
4-11 鈦酸鋇/鎳複合材之密度………..………………………………..77
4-12 鈦酸鋇/鎳複合材之微結構……..………………………………..82
4-13 鈦酸鋇/鎳複合材之介電性質…..………………………………..85
4-14 鈦酸鋇/鎳複合材之絕緣電阻…..………………………………..89
結論…...………………………………………………………………..91
參考文獻..……………………………………………………………..93
參考文獻
1. E. Luybrechts, K. Ishizaki and M. Taikata, “Review-The positive temperature coefficient of resisteivity in barium titanate” J. Mat. Sci., 30 2463-2474, (1995).
2. H. A. Sauer and J. R. Fisher, “Processing of Positive Temperature Coefficient Thermistors”, J. Am. Ceram. Soc., 43 [9] 297-301(1960).
3. P. P. Phule, S. H. Risbud, “Review Low-temperature synthesis and processing of electronic materials in the BaO-TiO2 system”, 25 J. Mat. Sci. 1169-1183, (1990).
4.P.P. Phule and S. H. Risbud, “Low Temperature Synthesis and Dielectr- ic Properties of Ceramics Derived from amorphous Barium Titanate G- els and Crystalline Powders”, Materials Science and Engineering, B3 p 241-47(1989).
5.M. P. Pechini, “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitors,” U. S. Pat. No. 3330697, July 11, 1967.
6.A. N. Christensen. Acta Chem. Scand. 24(1970).
7.J.Q. Eckert Jr., C.C Hung-Houston, B. L. Gersten, M.M. Lencka, R.E. Riman.,
“Kinetics and mechanisms of hydrothermal synthesis of barium titanate,” J. Am. Ceram. Soc. 79, 2929-39(1996).
8.Z. H. Michael, E, Andrew, J. Claudia, D. R. Rodeny, “Wet-chemical synthesis of monodispersed barium titanate particles hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3”Powder Technology. 3, 2-14(2000).
9. H. Yamamura et. al., Ceram. Int. 11,p17-22(1985).
10. D. F. K. Hennings, C. Metzmacher, and B. S. Schreinemacher, “Defect Chemistry and Microstructure of Hydrothermal Barium Titanate,” J. Am. Ceram. Soc., 84 [1] 179-82(2001).
11. W. D. Kingery. H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramic”, 2nd edn, Wiley, New York(1976).
12. A. Amin, M. A. Spears and B. M. Kulwicki, “Reaction of anatase and rutile With Barium Carbonate”, 66 [10] J. Am. Ceram. Soc. 733-738 (1983).
13. Lisenlotte K. Templeton and Joseph A. Pask. “Formation of BaTiO3 from BaCO3 and TiO2 in Air and in CO2”, J. Am. Ceram. Soc., 42 [5] 212-216(1959).
14. A. Beauger, J. C. Mutin, J. C. Niepce, “Synthesis reaction of metatitanate BaTiO3, Part 1 Effect of the gaseous atmosphere upon the thermal evolution of the system BaCO3-TiO2”, J. Mat. Sci. 18. 3041-3046 (1983).
15. A. Beauger, J. C. Mutin, J. C. Niepce, “Synthesis reaction of metatitanate BaTiO3, Part 2 Study of solid-solid reaction interfaces”, J. Mat. Sci. 18 3543-3550 (1983).
16. Lisenlotte K. Templeton and Joseph A. Pask. “Formation of BaTiO3 from BaCO3 and TiO2 in Air and in CO2”, J. Am. Ceram. Soc., 42 [5] 212-216(1959).
17. P. P. Phule, S. H. Risbud, “Review Low-temperature synthesis and processing of electronic materials in the BaO-TiO2 system”, 25 J. Mat. Sci. 1169-1183, (1990).
18 Kirby, K. W. and Wechsler B. A., “Phase Relations in the Barium titanate-Titanium Oxide System,” J. Am. Ceram. Soc., 74, 1841-47 (1991)
19. H. M. O’Bryan and J. Thomson, “ Phase Equilibria in the TiO2-Rich Region of the System BaO-TiO2”, J. Am. Ceram. Soc., 57 [12] 522-526 (1974).
20.H. M. O’Bryan and J. Thomson, “Temperature-Dependent Phase Boundaries for BaTi4O9, Ba4Ti13O30, and Ba6Ti17O40.” J. Am. Ceram. Soc., 68 [2] C-70-C-72 (1985).
21.V.. Krasevec, M. Drofenik and D. Kolar, “Topotaxy between BaTiO3 and Ba6Ti17O40”, J. Am. Ceram. Soc., 70 [8] C-193-C-195 (1987).
22.O. Eibl, P. Pongratz and P. Skalicky, “Formation of (111) Twins in BaTiO3 Ceramics”, J. Am. Ceram. Soc., 70 [8] C-195-C-197 (1987).
23. Y. H. Hu, M. P. Harmer and D. M. Smyth, “Solubility of BaO in BaTiO3”, J. Am. Ceram. Soc., 68 [7] 372-376 (1985).
24.R. K. Sharma, N. H. Chan and D. M. Smyth, “Solubility of TiO2 in BaTiO3”, J. Am. Ceram. Soc., 64 [8] 372-376 (1981).
25. F. Kulcsar, “A Microstructure Study of Barium Titanate Ceramics”, J. Am. Ceram. Soc., 39 [13] 13-19 (1959).
26. J. S. Choi, and H. G. Kim, “Influence of stoichiometry and impurity on the sintering behavior of barium titanate ceramics,.” J. Mat. Sci. 27 1285-1290 (1992).
27. D. F. K. Hennings, R. Janssen, and P. J. L. Reynen, “Control of liquid-enhanced Discontinuous grain growth in barium titanate.,” J. Am. Ceram. Soc. 70 [1] 23-27 (1987).
28. J. K. Lee and K. S. Hong, “Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics,” J. Am. Ceram. Soc., 84 [9] 2001-2006 (2001).
29. A. J. Moulson and J. M. Herbert, “Electroceramics”, Chapman and Hall, 1990.
30. N. G. Eror, T. M. Loehr, and B. C. Cornilsen, “Low Temperature Hexagonal BaTiO3 Polymorph and Carbonate Adsorption,” Ferroelectrics, 28, 321-24(1980).
31. W. R. Buessern, L. E. Cross and A. K. Goswami., “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate,” J. Am. Ceram. Soc., 49 [1] 33-36 (1966).
32.A. Yainaji, Y. Enomoto, T. Murakami and K. Kinoshita., “Preparation Characterization and Properties of Dy-Doped Small-Grained Barium Titanate,” J. Am. Ceram. Soc., 60 [ 3-4] 97-101 (1977).
33. T. M. Harkulich, J. Magder, M. S. Vukasovich and R. J. Lockhart, “Ferroelectrics of Ultrafine Particle Size:Ⅱ,” J. Am. Ceram. Soc., 54 [11] 548-553 (1971).
34. M. Kahn, “Preparation of Small-Grained and Large-Grained Ceramics. 2nd ed.,” 461-462, Wiley, New York, 1976.
35. M. T. Buscagila, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, “Influence of foreign ions on the crystal structure of BaTiO3,” J. Eur. Ceram. Soc., 20 1997-2007.
36. I. Zajc and M. Drofenik, “Grain Growth and Densification in Donor-Doped BaTiO3,” Br. Ceram. Trans. J., 88 223-225 1989.
37. P. Hansen, D. Hennings and H. Schreinemacher, “High-K Dielectric Ceramics from Donor/Acceptor-Codoped (Ba1-xCax)(Ti1-yZry)O3(BCTZ). J. Am. Ceram. Soc., 81 [5] 1369-1373 (1998).
38. 翁震良, “鈦酸鋇及鈦酸鋇/鎳複合材料可靠度及電性之研究” 國立台灣大學材料科學與工程學研究所碩士論文, 2000.
39.曾偉雄, “含鎳之鈦酸鋇陶瓷燒結行為、微結構及電性之研究” 國立台灣大學材料科學與工程學研究所博士論文,1993.
40. H. Emoto, and J. Hojo., “ Sintering and dielectric properties of BaTiO3-Ni composite ceramics,” J. of Ceram. Soc. Jpn. Int. Ed., 100 553-557 (1992).
41. H. J. Hagemann, and D. Hennings, “ Reversible weight change of acceptor-doped BaTiO3,” J. Am. Ceram. Soc. 64 590-594 (1981).
42. B. Jaffe, W. R. Cook, and H. Jaffe., “ Piezoelectric Ceramics: Chapter 5. Barium Titanate,” Academic Press, London, 53-114 (1971).
43.H. Hyuga, Y. Hayashi, T. Sekino and K. Niihara, “Fabrication process and Electrical Properties of BaTiO3/Ni Nanocomposites,” NanoStructure Materials, 9 547-550 (1997).
44.J. H. Hwang, K. Watari, M. Sando, M. Toriyama and K. Niihara, “Low-Temperature Sintering and High-Strength Pb(Zr,Ti)O3-Matrix Composites Incorporating Silver Particles,” J. Am. Ceram. Soc., 80 [3] 791-793 (1997).
45. T. Yamamoto,”Influence of small Ba/Ti non-stoichiometry on grain growth behavior in barium titanate.,” Br. Ceram. Trans. 94 [5] (1995).
46. G. Alrt, D. Hennings, and G. D. With., “Dielectric Properties of Fine-Grained Barium Titanate,” J. Appl. Phys., 58, 1619-1625 (1985).
47. W. H. Tzing and W. H. Tuan,“Effect of NiO addition on the sintering and grain growth behaviour of BaTiO3,” Ceram. Int. 25 69-75 (1999).
48. W. H. Tzing , W. H. Tuan and H. L. Lin,“The effect of microstructure on the electrical properties of NiO-doped BaTiO3,” Ceram. Int. 25 452-430 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔