(3.235.108.188) 您好!臺灣時間:2021/02/28 00:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃淑敏
研究生(外文):Shu-Ming Huang
論文名稱:鈦酸鋇介電陶瓷可靠度之研究
論文名稱(外文):The reliability of BaTiO3 dielectric
指導教授:段維新段維新引用關係
指導教授(外文):Wei-Shing Tuan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:鈦酸鋇銀電極高加速壽命測試可靠度絕緣電阻銀遷移退化
外文關鍵詞:barium titanateAg electrodesilver migrationHALTreliabilityinsulation resistancedegradation
相關次數:
  • 被引用被引用:9
  • 點閱點閱:857
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:1
鈦酸鋇陶瓷電容器通常為達高電容值的需求,介電層厚度越來越薄,以增加其體積效率,而目前應用最為廣泛的,即為多層陶瓷電容器(multi-layers ceramic capacitor, MLCC),其內電極通常採用銀及銀/鈀電極,在自然環境長時間的使用下,研究指出會有電極發生遷移而造成電容器絕緣電阻(insulation resistance, IR)的降低而損壞。
本研究探討以不同燒結曲線及添加銀顆粒的方式,製作成不同微結構的鈦酸鋇材料,純鈦酸鋇部分,在燒結溫度為1310℃時其相對密度最高,而介電常數最大值則出現在燒結溫度為1270℃,因為影響介電常數的大小除了緻密度之外,晶粒大小也是一重要因素。銀添加量與介電常數間的相互關係則為,隨著銀添加量的增加而增加,一直到達一最大值之後,則隨著銀添加量的增加而下降。損失因子方面,以純鈦酸鋇者為最低,而含銀的部分,損失因子均偏高。
此外,經由刮刀成形法所製備之陶瓷薄片,並以不同燒結曲線及添加銀顆粒的方式,所製作成不同微結構的鈦酸鋇材料,在一高電壓(10V/μm)、高溫(100℃)的環境下做壽命測試,即所謂高加速壽命測試(Highly accelerated life testing, HALT)來檢驗鈦酸鋇介電陶瓷的可靠度(reliability),並且更進一步探討造成介電層破壞的原因,研究結果指出,經由破壞微結構觀察,銀電極遷移有可能造成介電層損壞,但是當銀電極遷移時所發生的氧化還原反應也會同時產生大量的氧氣,當此種氣體累積到一定量時,則會破壞電極與介電層之間的接合,進而導致介電層失效;再者,結果亦顯現出在平均破壞時間(mean time to failure, MTTF)方面,純鈦酸鋇具有較長的平均破壞時間,當中又以燒結溫度為1250℃者壽命(life time)最長;而添加第二相銀顆粒的部分,由於其微結構中的缺陷較多,因此相較於純鈦酸鋇的試樣,其壽命則明顯的較短。
BaTiO3 based materials are widely used as the dielectric in ceramic capacitors for their excellent permittivity. In order to increase volume efficiency, multi-layered ceramic capacitors (MLCC) have been developed for many years. Ag, Ag/Pd, and Ni are often used as the internal electrode, and its thickness is usually about 1~2μm. Previous studies indicated that the electrode migration could reduce the insulation resistance (IR) and eventually destroy the capacitors after prolonged service.
By using different sintering curves and various silver contents, we could prepare several kinds of microstructure. Even though the silver content was higher 10vol%, the Ag-doped BaTiO3 was electrical insulated. The dielectric constant was influenced by the grain size . The results showed that the samples sintered at 1270℃ had the highest dielectric constant. The dielectric constant of Ag-doped barium titanate increases with the increase of Ag content.
The highly accelerated life test (HALT) is one of the methods to quantify the reliability of MLCCs. The samples were under high voltage (10V/μm) and high temperature(100℃) to determine the mean time to falure (MTTF) respectively. The results showed that un-doped barium titanate sintered at 1250℃ had the longest lifetime. The lifetime of Ag-doped samples was much shorter than that of the un-doped ones.
英文摘要………………………………………………………………….i
中文摘要……………………………………………………………...…iii
目錄……………………………………………………………..….…v
圖目錄………………………………………………………………….viii
表目錄…………………………………………………………………..xii
第一章 前言…………………………………………………………….1
第二章 文獻回顧……………………………………………………… 2
2-1鈦酸鋇之基本性質…………………………………………………2
2-2鈦酸鋇微結構與燒結特性…………………………………………..8
2-3鈦酸鋇的介電特性………….…………………..……………….…10
2-4 添加第二相銀對鈦酸鋇的影響……………………...……………12
2-4-1銀的特性………………………………………………………….12
2-4-2 銀對鈣鈦礦結構的影響………………………………………...13
2-5鈦酸鋇電容器絕緣電阻之退化……………………………………14
第三章 實驗步驟………………………………………………………20
3-1鈦酸鋇薄片之製備………………………………………………....20
3-1-1實驗材料…………………………………………………………20
3-1-2刮刀流程…………………………………………………………20
3-1-3實驗流程………………………………………………………....25
3-2試片之成形與燒結…………………………………………………25
3-2-1電性試樣的製備與燒結………………………………………….25
3-2-2 TMA試樣的製備與燒結………………………………………...25
3-3試樣之相鑑定………………………………………………………26
3-4密度之量測…………………………………………………………26
3-5粉末粒徑分布分析…………………………………………………26
3-6電性之量測…………………………………………………………27
3-6-1介電性質的量測………………………………………………….27
3-6-2絕緣電阻之量測………………………………………………….28
3-6-3試樣之可靠度…………………………………………………….28
3-6-4韋伯分佈………………………………………………………….29
3-7顯微結構之觀察……………………………………………………30
第四章 結果與討論…………………………………………………..31
4-1粉體粒徑分析………………………………………………………31
4-2試片之相鑑定………………………………………………….…...31
4-2-1鈦酸鋇之XRD pattern…………………………………………...31
4-2-2鈦酸鋇/銀複合材料之XRD pattern……………………………..32
4-3相對密度與燒結溫度之關係………………………………………37
4-4 TMA實驗數據之比較……………………………………………..40
4-4-1燒結溫度與線收縮量之關係…………………………………….40
4-4-2相對密度與燒結溫度之關係…………………………………….40
4-4-3燒結溫度與緻密化速率之關係………………………………….42
4-4-4燒結時間與緻密化速率之關係………………………………….42
4-5電性之量測…………………………………………………………44
4-5-1燒結溫度與介電常數之關係……………………………….……44
4-5-2燒結溫度與損失因子之關係…………………………………….48
4-5-3絕緣電阻………………………………………………………….50
4-5-4高加速壽命測試………………………………………………….52
4-5-5韋伯分佈………………………………………………………….57
4-6顯微結構的觀察……………………………………………………60
4-6-1破斷面的觀察…………………………………………………….60
4-6-2 HALT破壞面觀察……………………………………………….62
4-6-3破壞特徵的統計………………………………………………….68
第五章 結論…………………………………………………………..75
參考文獻………………………………………………………………..76
圖目錄
圖2-1 BaO-TiO2系統的二元相圖…………………………………….3
圖2-2 溫度高於TC點之理想鈣鈦礦結構…………...………………..5
圖2-3 溫度低於TC點時鈦離子之偏移……………...………………..6
圖2-4 鈦酸鋇單位晶胞結構隨溫度之變化…………………………..7
圖2-5 鈦酸鋇介電陶瓷之介電常數隨不同晶粒大小之變化………11
圖2-6 顯示電極沿晶界遷移之示意圖…………...………………….19
圖3-1 商用鈦酸鋇之刮刀流程圖……………..……………………..22
圖3-2 商用鈦酸鋇添加氧化銀之刮刀流程圖………………...…….23
圖3-3 後製程及分析流程圖…………………..………….……….…24
圖4-1 商用鈦酸鋇在不同燒結溫度下及生胚的XRD patterns….....33
圖4-2 商用鈦酸鋇+2.5vol%銀在不同燒結溫度下及生胚的XRD patterns…………………………………………………….......34
圖4-3 商用鈦酸鋇+5.0vol%銀在不同燒結溫度下及生胚的XRD patterns……………………………………………………..….35
圖4-4 商用鈦酸鋇+10.0vol%銀在不同燒結溫度下及生胚的XRD patterns………………………….………………………….….36
圖4-5 鈦酸鋇及鈦酸鋇加入2.5, 5, 10vol%銀顆粒之試樣,其燒結溫度與相對密度之關係………………...…………………..…..39
圖4-6 商用鈦酸鋇在不同燒結溫度下其軸向收縮量與燒結溫度之關係圖…………………………………………………………....41
圖4-7 商用鈦酸鋇相對密度與燒結溫度之關係圖…………………41
圖4-8 為商用鈦酸鋇的燒結溫度與緻密化速率的關係圖………....43
圖4-9 鈦酸鋇之緻密化速率與相對密度之關係圖…………………43
圖4-10 商用鈦酸鋇添加2.5、5、10 vol%銀及純鈦酸鋇試樣之介電常數值與燒結溫度之關係圖…………………………..……….46
圖4-11 室溫下的介電常數與氧化銀添加量之關係………………....46
圖4-12 鈦酸鋇及鈦酸鋇添加2.5, 5, 10vol%銀顆粒之試樣,其介電常
數與相對密度之關係………………………………………...47
圖4-13 商用鈦酸鋇添加2.5、5、10 vol%氧化銀及純鈦酸鋇試樣不同燒結溫度與損失因子之關係…………………………………49
圖4-14 商用鈦酸鋇添加2.5、5、10 vol%氧化銀及純鈦酸鋇試樣絕緣電阻(IR)與燒結溫度之關係………………………………….51
圖4-15 不同的燒結溫度下之純商用鈦酸鋇試樣在HALT下隨時間與絕緣電阻退化之情形…………………………………………56
圖4-16 不同的燒結溫度下之純鈦酸鋇試樣在HALT下時間與電容值退化之情形…………………………………………………...56
圖4-17 純商用鈦酸鋇經過HALT後,破壞時間之韋伯(Weibull)分佈………………………………………………………………58
圖4-18 商用鈦酸鋇+2.5vol%銀經過HALT後,破壞時間之韋伯(Weibull)分佈……………………………………………..….58
圖4-19 商用鈦酸鋇+5.0vol%銀經過HALT後,破壞時間之韋伯(Weibull)分佈…………………………….……………………59
圖4-20 商用鈦酸鋇+10.0vol%銀經過HALT後,破壞時間之韋伯(Weibull)分佈………………………………………………….59
圖4-21 (a)1250℃、(b)1270℃、(c)1290℃、(d)1310℃,及(e)1330℃燒結溫度之試樣破斷面……………………………………. ....61
圖4-22 平整的破斷面………………………………………………....64
圖4-23 破壞源………………………………………………………....64
圖4-24 銀遷移示意圖…………………………………………………65
圖4-25 經HALT破壞後銀電極遷移的情形………………………....66
圖4-26 經HALT破壞後銀電極剝離的情形…………………..……..67
圖4-27 純鈦酸鋇且燒結溫度為1250℃,經HALT破壞後,試樣破壞特徵之韋伯分布…………………………………………..…..71
圖4-28 純鈦酸鋇且燒結溫度為1330℃,經HALT破壞後,試樣破壞特徵之韋伯分布……………………………………………....71
圖4-29 鈦酸鋇+2.5vol%銀顆粒且燒結溫度為1250℃,經HALT破壞後,試樣破壞特徵之韋伯分布…………………………..…..72
圖4-30 鈦酸鋇+2.5vol%銀顆粒且燒結溫度為1330℃,經HALT破壞後,試樣破壞特徵之韋伯分布……………………………..72
圖4-31 鈦酸鋇+5.0vol%銀顆粒且燒結溫度為1250℃,經HALT破壞後,試樣破壞特徵之韋伯分布……………………………..73
圖4-32 鈦酸鋇+5.0vol%銀顆粒且燒結溫度為1330℃,經HALT破壞後,試樣破壞特徵之韋伯分布……………………………..73
圖4-33 鈦酸鋇+10vol%銀顆粒且燒結溫度為1250℃,經HALT破壞後,試樣破壞特徵之韋伯分布……………………………..74
圖4-34 鈦酸鋇+10vol%銀顆粒且燒結溫度為1330℃,經HALT破壞後,試樣破壞特徵之韋伯分布……………………………..74
表目錄
表3-1 鈦酸鋇粉末之物理及化學性質與相關組成………………..…21
表4-1 不同組成及不同燒結溫度之試樣所的之平均破壞時間(MTTF)
……………………………………………………………………….….55
1. H. C. Ling, A. M. Jackson, “Correlation of Silver Migration with Temperature-Humidity-Bias (THB) Failures in Multilayer Ceramic Capacitors,” IEEE Transactions on Components, Hybrids, And Manufacturing Technology, 12(1), 130-37, March, 1989.
2. Toshio Kobayashi, Hisashi Ariyoshi, and Akihiko Masuda, “Reliability Evaluation and Failure Analysis for Multilayer Ceramic Chip Capacitors,” IEEE Transactions On Component, Hybrids, and Manufacturing Technology, Vol. CHMT-1, No. 3, 316-324, Sep., 1978.
3. Ruzhong Zuo, Longtu Li, Zhilun Gui, “Influence of Silver Migration on Dielectric Properties and Reliability of Relaxor Based MLCCs,” Ceramics International, 26, 673-676, 2000.
4. Takeshi Nomura, Akira Sato, Yukie Nakano, and Shigeki Sato, “Reliability of Multilayer Ceramic Capacitors with Ni Electrodes,” Materials Research Center, TDK Corporation 570-2, Matsugahita, Minami-Hatori, Narita-shi, Chiba, 286 Japan.
5. Kirby, K. W. and Wechsler B. A., “Phase Relations in the Barium Titanate-Titanium Oxide System,” J. Am. Ceram. Soc., 74, 1841-47, 1991.
6.Chiang Y. M., Bimie D., III, and Kingery W. D., Physical Ceramics- Principles for Ceramic Science and Engineering, John Willey & Sons, New York, 1997.
7.Shirane G., Jona F., and Peninsky R., Proc. I.R.E., 42, 1738, 1955.
8.Moulson A. J. and Hebert J. M., “Electroceramics : Material Properties and Applications,” Chapman and Hall, London, 5-85 & 182-264, 1990.
9.Hillert M., “ On the Theory of Normal and Abnormal Grain Growth,” Acta Metall., 13(3), 227-38, 1965.
10.Kingery W. D., Bowen H. K. and Uhlmann D. R., “Introduction to Ceramics, 2nd ed.”, 461-62, Wiley, New York, 1976.
11.G. Arlt, D. Hennings, G. de With, “Dielectric properties of Fined-Grained Barium Titanate,” J. Appl. Phys., 58, 1619-25, 1985.
12.Matsuo Y. and Sasaki H., “Exaggerated Grain Growth in Liquid Phase Sintering of BaTiO3,” J. Am. Ceram. Soc.-Discussion and Note, 54(9), 471, 1971.
13.Xue L. A., “Thermodynamic Benefit of Abnormal Grain Growth in Pore Elimination During Sintering,” J. Am. Ceram. Soc., 72(8), 1536-37, 1989.
14.Hsien H. L. and Fang T. T., “Effect of Green States on Sintering Behavior and Microstructure Evolution of High-Purity Barium Titanate,” J. Am. Ceram. Soc., 73(6), 1566-73, 1990.
15.Lin J. N. and Wu L., “Wetting Reaction Between Lithium Fluoride and Barium Titanate,” J. Am. Ceram. Soc., 72(9), 1709-12,1989.
16.Wang C. H., and Wu L., “Lead Borate Glass-A New Sintering Agent for BaTiO3 Ceramics,” Jpn. J. Appl. Phys., 32, 2020-34, 1993.
17.Buessem W. R., Cross L. E., and Goswami A. K., “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate,” J. Am. Ceram. Soc., 49(1), 33-36,1966.
18.Martirena H. T. and Burfoot J. C., “Grain-Size Effect on Peoperties of Some Ferroelectric Ceramics,” J. Phys., c7, 3182-92, 1974.
19.K. Yoo, C. Larry, C. Burton and F. W. Stephenson, “,” IEEE Transactions On Component, Hybrids, and Manufacturing Technology, Vol. CHMT-10, 274-282, 1987.
20.R. Waser, T. Baiatu and K. H. Haraft, “DC Electrical Degradation of Perovskite-Type Titantates: I, Ceramics,” J. Am. Ceram. Soc., 73(6), 1645-53, 1990.
21.Ikushima H. and Havakawa S., “Electrical Properties of Ag-Doped Barium Titanate Ceramics,” Jpn J. Appl. Phys., 4[5], 328-36, 1965.
22.Maher G. H., “Effect of Silver Doping on the Physical and Electrical Properties of PLZT Ceramic,” J. Am. Ceram. Soc., 66(6), 408-13, 1983.
23.Sato Y., Kanai H., and Yamashita Y., “Effects of Silver and Palladium Doping on the Dielectric Properties of 0.9Pb(Mg1/3Nb2/3)03-0.1PbTiO3 Ceramic,” J. Am. Ceram. Soc., 79(1), 261-65, 1996.
24.N. Halder, A. Das Sharma, S.K. Khan, A. Sen, and H.S. Maiti, “Effect of Silver Addition on the Dielectric Properties of Barium Titanate Based Low Temperature Processed Capacitors,” Materials Research Bulletin, 34(4), 545-50, 1999.
25.Hwang J. H., Watari K., Sando M., Toriyama M., and Niihara K., “Low-Temperature Sinterina and High-Strength Pb(Zr,Ti)O3-Matrix Composites Incorporating Silver Particles,” J. Am. Ceram. Soc., 80(3), 791-93, 1997.
26.J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano, T. Nomura, “Reliability of Multilayer Ceramic Capacitors with Nickel Electrodes,” Journal of Power Sources, 60, 199-203, 1996.
27.Hideyuki Kanai, Osamu Furukawa, “Effect of Stoichiometry on the Dielectric Properties and Life Performance of (Pb0.875Ba0.125)[(Mg1/3 Nb2/3)(Zn1/3Nb2/3Ti0.2)]O3 Relaxor Dielectric Ceramic: Part II, life performance,” J. Am. Ceram. Soc., 76(2), 459-64, 1993.
28.J. Rodel and G. Tomandl, “,” J. Mater. Sci., 19, 3515-23, 1984.
29.K. Lehovec and C. A. Shirn, “,” J. Appl. Phys., 33, 2036, 1962.
30. Loh, H, “Effect of Grain Size and Mechanical Processing on the Dielectric Properties of BaTiO3,” J. Appl. Phys., 53(9), 6229-35, 1982.
31. R. Waser, T. Baiatu and K. H. Haraft, “DC Electrical Degradation of Perovskite-Type Titantates: I, Ceramics,” J. Am. Ceram. Soc., 73(6), 1645-53, 1990.
32. M. C. Blanco-Lopez, B. Rand, F. L. Riley, “Polymeric stabilization of aqueous suspensions of barium titanate. PartΙ:Effect of pH”, J. Eur. Ceram. Soc., 20(10), 1579-1586, 2000.
33. M. C. Blanco-Lopez, B. Rand, F. L. Riley, “Polymeric stabilization of aqueous suspensions of barium titanate. PartⅡ:Effect of polyelectrolyte concentration,” J. Eur. Ceram. Soc., 20, 1587-1594, 2000.
34. Alfred I. Y. Tok, Freddy Y.C. Boey, K.A. Khor, “Tape Casting of High Dielectric Ceramic Composite Substrates for Microelectronics Application,” Journal of Materials Processing Technology, 89-90, 508-12, 1999.
35. Suman Chatterjee, K. Sengupta, H.S. Maiti, “A Miniature PTC Thermistor Based Sensor Element Fabricated by Tape Casting Technique,” Sensors and Actuators B, 60, 155-60, 1999.
36. D. Hotza, P. Greil, “Review: Aqueous Tape Casting of Ceramic Powders,” Materials Science and Engineering, A202, 206-17, 1995.
37.S. F. Wang, J. P. Dougerty, W. Huebner, and J. G. Pepin, “Silver-Palladium Thick-Film Conductors,” J. Am. Ceram. Soc., 77(12), 3051-72, 1994.
38.Assal, B. Hallstedt, and L. J. Gauckler, “Thermodynomic Assessment of the Silver-Oxygen System,” J. Am. Ceram. Soc., 80(12), 3054-60, 1997.
39.Chin-Yi Chen and Wei-Hsing Tuan, “Effect of Silver on the Sintering and Grain-Growth Behavior of Barium Titanate,” J. Am. Ceram. Soc., 83(12), 2988-92, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔