(54.236.58.220) 您好!臺灣時間:2021/03/01 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余昭倫
研究生(外文):Chao-Lun Yu
論文名稱:Sn37Pb、Sn36Pb2Ag與Sn3.5Ag銲錫球格陣列構裝界面反應研究
論文名稱(外文):The study of interfacial reacitons of Sn37Pb, Sn36Pb2Ag and Sn3.5Ag ball grid array joints
指導教授:莊東漢莊東漢引用關係
指導教授(外文):Tung-Han Chuang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:148
中文關鍵詞:球格陣列構裝銲錫反應界面反應推球試驗金脆現象
外文關鍵詞:ball grid arraysolderinginterfacial reactionball shear testgold embrittlement
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1330
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
為達成球格陣列構裝錫球無鉛化的目標,本論文進行Sn37Pb、Sn36Pb2Ag與Sn3.5Ag球格陣列構裝界面反應研究,以瞭解鉛錫合金與Sn3.5Ag無鉛銲錫在球格陣列構裝接點上的界面反應行為。
在銲錫反應研究中,三種銲錫與鎳基板的銲錫反應都是在界面生成不規則形狀的Ni3Sn4介金屬層,介金屬層厚度隨著反應溫度與時間的增加而增加,三種銲錫的Ni3Sn4介金屬層是屬於擴散控制成長機構,且具有相近的成長活化能,Ni3Sn4在Sn37Pb、Sn36Pb2Ag與Sn3.5Ag銲錫中的成長活化能分別是30.3 kJ/mol、34.8 kJ/mol與 35.6 kJ/mol。
在球格陣列構裝研究中,鉛錫合金錫球與Au/Ni/Sn接點在迴銲後反應生成Ni3Sn4介金屬層,錫球基地中散佈細針狀AuSn4,隨著時效時間增加AuSn4轉變為 (Au, Ni)Sn4並聚集於界面形成連續層,當試片經歷一次後迴銲,(Au, Ni)Sn4連續層消失並溶回銲錫基地中。Sn3.5Ag錫球與Au/Ni/Sn接點的時效反應並沒有出現(Au, Ni)Sn4連續層,而是呈塊狀(Au, Ni)Sn4分佈在銲錫基地中。
在推球試驗上,Sn3.5Ag比鉛錫合金具有較高的接點強度,接點強度隨著時效時間增加而下降,約在時效20小時後強度維持穩定,接點強度與銲錫微硬度完全相關,Sn3.5Ag接點呈現完全的延性破斷,具有高強度。Sn37Pb與Sn36Pb2Ag錫球接點上的(Au, Ni)Sn4連續層會造成嚴重的金脆現象,使接點成脆性破斷並使強度遽降。由本研究所得到的結果顯示Sn3.5Ag接點上不會有(Au, Ni)Sn4連續層,因此沒有金脆現象,使其接點強度高於鉛錫合金。
Abstract
The interfacial reaction and ball shear strength of three ball grid array (BGA) solder joints - Sn37Pb, Sn36Pb2Ag and Sn3.5Ag - have been investigated for the purpose of further understanding on the lead-free joint. Ni3Sn4 layers were observed in all three solders in soldering reactions with Ni plates. The formations of the intermetallic compounds were diffusion controlled and the apparent activation energies were determined to be 30.3 kJ/mol, 34.8 kJ/mol and 35.6 kJ/mol respectively.
The interfacial reactions between solder balls and Au/Ni/Sn metallization showed fast formation of AuSn4 after reflow. The needle-shaped AuSn4 was then transferred to a continuous (Au, Ni)Sn4 layer after aging at tin-lead joints. The (Au, Ni)Sn4 layer disappeared and dissolved into solder matrix after a post-reflow treatment. No (Au, Ni)Sn4 layer was found at the Sn3.5Ag joint, in stead, grain-shaped (Au, Ni)Sn4 formed in the solder matrix.
Results of ball shear test showed a greater strength in Sn3.5Ag joints, in which the ductile shear strength was corresponded to the microhardness of the solder. In the other hand, gold embrittlement took place at the (Au, Ni)Sn4 interface at tin-lead joints, which led to a brittle and weak joint. The investigation concluded a reliable joint in Sn3.5Ag solder that gold embrittlement is excluded.
目 錄
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅲ
目錄……………………………………………………………………..Ⅴ
圖目錄…………………………………………………………………Ⅶ
表目錄………………………………………………………………..ⅩⅣ
壹、前言……………………………………………………………...1
1. 1 球格陣列構裝簡介……………………………………………..1
1. 2 無鉛銲錫之發展……………………………………………………7
1. 3 球格陣列構裝可靠度評估… …………………………………….12
1. 4 研究動機 …………………………………………………………15
貳、理論與文獻回顧…………………………………………………..16
2. 1 錫球接點界面反應………………………………………………..16
2. 1. 1 介金屬成長動力學…………………………………………..16
2. 1. 2 錫球與銅墊之界面反應……………………………………..20
2. 1. 3 錫球與鎳鍍層之界面反應…………………………………..26
2. 2 金脆現象…………………………………………………………..29
2. 2. 1鉛錫合金與金的反應………………………………………...29
2. 2. 2 Sn3.5Ag與金的反應…………………………………………34
2. 3 錫球接點可靠度…………………………………………………..37
2. 3. 1 可靠度試驗規範……………………………………………..37
2. 3. 2 推球試驗……………………………………………………..41
參、實驗方法…………………………………………………………..44
3. 1 銲錫反應研究……………………………………………………..44
3. 2 球格陣列構裝研究………………………………………………..52
3. 2. 1 錫球接點之界面反應研究…………………………………..58
3. 2. 2 錫球接點強度之評估………………………………………..59
肆、結果與討論……………………………………………….…….….61
4. 1 銲錫反應研究……………………………………………………..61
4. 1. 1 Sn37Pb與Ni基板之界面反應………………………………59
4. 1. 2 Sn36Pb2Ag與Ni基板之界面反應…………………………..67
4. 1. 3 Sn3.5Ag與Ni基板之界面反應………………………………74
4. 2球格陣列構裝研究…………………………………………………83
4. 2. 1 Sn37Pb錫球之界面反應與接點強度………………………..83
4. 2. 2 Sn36Pb2Ag錫球之界面反應與接點強度………………….104
4. 2. 3 Sn3.5Ag錫球接點之界面反應與接點強度………………...113
伍、結論……………………………………………………………..131
陸、參考文獻……………………………………………………….134
參考文獻
1. J. H. Lau, “ Ball Grid Array Technology”, McGraw-Hill, New York, 1995.
2. R. R. Tummala, E. J. Rymaszewski and A. G. Klopfenstein, “Microelectronics Packaging Handbook”, Chapman, 1997.
3. N. Koopman, “Flip Chip Interconnections”, Concise Encyclopedia of Semiconducting Materials and Relatived Technologies, Pergamon Press, London, 1992, p.184.
4. D. P. Seraphim, R. C. Lasky and C-Y. Li, “Principle of Electronic Package”, McGraw-Hill, New York, 1989.
5. B. Freyman and R. Pennisi, Proceedings of the 41st IEEE Electronic Components and Technology Conference, May, 176 (1991).
6. P. T. Vianco, “Solder Alloys: A Look at the Past, Present and Feature”, Welding Journal, (1997), pp. 45-49
7. B. Trumble, “Get the Lead out”, IEEE Spectrum, (1998), pp. 55-60
8. P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, JOM, July 1993, pp.14-19
9. A. Z. Miric and A. Gruad, “Lead-Free Alloys”, Soldering and Surface Mount Technology, 10, (1998), pp. 19-25
10. J. H. Vincent and G. Humoson, “Lead-Free Solders for Electronic Assembly”, Circuits Assembly, (1994), 38-41
11. M. McCormack and S. Jin, “Progress in the Design of New Lead-Free Solder Alloys”, JOM, (1993), pp. 36-40
12. M. McCormack and S. Jin, “The Design and Properties of New, Pb-Free Solder Alloys”, Proceeding of the IEEE/CPMT International Electronics Manufacturing Technology Symposium, (1994), pp. 7-14
13. D. B. Knorr and L. E. Felton, “Design Lead-Free Solder Alloys for Advanced Electronics Assembly”, Design for Manufacturability ASME, 67, (1994), pp. 27-34
14. S. K. Kang, “Lead(Pb)-Free Solders for Electronic Packaging”, J. Elect. Mat.,.23, (1994), pp..701-707
15. E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders”, J. Elect. Mat.,.23, (1994), pp..709-713
16. J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, Int. Mat. Rev., 40, (1995), pp.65-93
17. W. J. Plumbridge, “ Review Solders in Electronics”, J. Mater. Sci., 31, (1996), pp. 2501-2514
18. N. C. Lee, “Getting Ready for Lead-Free Solders”, Soldering and Surface Mount Technology, 26, (1997), pp. 65-69
19. S. Crum, “Targeting Lead-Free Solutions”, EP&P, June, (1999), pp. 28-35
20. J. D. Raby and R. W. Johnson, “Is a Lead-Free Furture Wishful Thinking?”, EP&P, August, (1999), pp. 18-20
21. E. Bradley, K. Snowdon and R. Gedney, “Lead-Free Update”, Circuits Assembly, Dec., (1999), pp.-30-33
22. J. Vardaman, “What’s Driving the Lead-Free Movement”, EP&P, Nov., (1999), p.76
23. W. Yang and R. W. Messler, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, Journal of Electronic Materials, 23, (1994), pp. 765-772
24. M. Harada and R. Satoh, “Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Microbonding”, IEEE Trans. on Comp.,Pac. and Manu. Tech., 13, 4, 1990, pp.736-742
25. P. Biocca, “Global Update on Lead-Free Solders”, SMT, June, (1999), pp. 64-67
26. T. Laine-Ylijoki, H. Steen and A. Forsten, “Development and Validation of a Lead-Free Alloy for Solder Paste Applications”, IEEE Trans. on Comp.,Pac. and Manu. Tech., Part C, 20, (1997), pp.194-198
27. K. Shimizu, T. Nakanishi, K. Karasawa, K. Hashimoto and K. Niwa, “Solder Joint Reliability of Indium-Alloy Interconnection”, J. Elect. Mat., .24, (1996), pp.39-45
28. J. L. Frear Goldstein and J.W. Morris, Jr., ” The Effect of Substrate on the Microstructure and Creep of Eutectic In-Sn”, Metall. Mater. Trans. A, 25A December(1994), pp2715-2722
29. I. Shohji, S. Fujiwara, S. Kiyono and K. F. Kobayashi, “ Intermetallic Compound Layer Formation Between Au and In-48Sn Solder”, Scrip. Mater., 40, 7, 815(1999)
30. S. Jin and M. Mccormack, “ Dispersoid Additions to a Pb-Free Solder for Suppression of Microstructural Coasening”, J. Electro. Mater., 23(8), 735(1994).
31. R. T. Howard, “Optimization of Indium-Lead Alloys for Controlled Collapse Chip Connection Application”, IBM J. RES. Develop., 26, (1982), pp.36-40
32. C. E. T. White, “Indium : High-Technology Metal”, Advanced Materials & Processes inc. Metal Progress, (1997), 69-72
33. S. Wege, G. Habanicht, and R. Bergmann, “Manufacture and Reliability of Alternate Solder Alloys”, SMI, San Jose, Carlif., pp. 699-704.
34. 詹益淇, 莊東漢, “無鉛銲錫的回顧與最新發展”, 電子月刊, 6, (2000), pp. 226-237
35. K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case”, Mat. Chem. and Phys., 46, (1996), pp. 217-223
36. K. N. Tu, “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metall., 21,(1973), pp. 347-354
37. K. N. Tu, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metall., 30,(1982), pp. 947-952
38. A. Hayashi, C. R. Kao and Y. A. Chang, “Reactions of Solid Copper with Pure Liquid Tin and Liquid Tin saturated with Copper”, Scripta Materialia, 37, (1997), pp. 393-398
39. C. R. Kao, “Microstructures Developed in Solid-liquid Reactions: Using Cu-Sn Reaction, Ni-Bi Reaction and Cu-In Reaction as Examples”, Materials Science and Engineering, 238, (1997), pp. 196-201
40. A. J. Sunwoo, J. W. Morris, Jr. and G. K. Lucey, Jr., Mrt. Trans., 23A, 1323(1992).
41. P. T. Vianco, K. L. Erickson and P. L. Hopkins, ”Solid State Intermetallic Compound Growth Between Copper and High Temperature, Tin-Rich Solders-Part1: Experiment Analysis”, J. Electro. Mater., 23, 8, (1994)pp.721-727
42. D. R. Flander, E. G. Jacobs and R. F. Pinizzotto, “Activation Energies of Intermeallic Growth of Sn-Ag Eutectic Solder on Copper Substrates”, J. Electro. Mater., 26, 7, (1997)883
43. D. R. Frear and P. T. Vianco, Metall. Mater. Trans. A, 25A(1994)1509
44. Wenge Yang and Robert W. Messler, Jr., “Microstructure Evolution of Eutectic Sn-Ag Solder Joint”, J. Electr. Mater., 23, 8, (1994)765
45. Y. Kariya and M. Otsuka, J. Electron. Mater., 27 (7), 866 (1998)
46. Y. Kariya and M. Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn, and In) Solder Alloys”, J. Electron. Mater., 27 (11), 1229 (1998)
47. S. W. Yoon, J. —R. Soh, B. —J. Lee and H. M. Lee, Acta Mater. 45, (1997) 951
48. S. W. Yoon, W. K. Choi and H. M. Lee, “Interfacial Reaction Between Sn-1Bi-5In-9Zn Solder and Cu Substrate”, Scripta Materialia, 40 (3), 327(1999)
49. S. W. Yoon, W. K. Choi and H. M. Lee, “Calculation of Surface Tension and Wetting Properties of Sn-Based Solder Alloys”, Scripta Materialia, 40 (3), 297(1999)
50. J. O. Stevenson, J. L. Roberts, R. N. Davidson, F. G. Yost, and F. M. Hosking, Proceedings of the Pacific RIM/ASME International Intersociety Electronic and Photonic Packaging Conference 1997, ASME, NewYork, p.1335.
51. T. B. Massalski, “Binary Alloys Phase Diagram”, by ASM Metals Park, Ohio, 1991.
52. S. K. Kang, R. S. Rai and S. Purushothaman, “Interfacial Reactions During soldering with Lead-Tin Eutectic and Lead-Free,Tin-Rich Solders”, J. Electron. Mater. 25 (7), 1113 (1996).
53. S. K. Kang and V. Ramachandran, “Growth Kinetics of Intermetallic Phases at the Liquid Sn and Solid Ni Interface”, Scripta Meter. 14, 421 (1980).
54. T. Y. Pan, H.. D. Blair, J. M. Nicholson and S. W. Oh, “Intermetallic Compound Formaiton of Sn/Pb, Sn/Ag, and Sn Solders on Ni Substrate From the Molten Stage and its Growth During Aging”, Advances in Electronic Packaging, 2, 1347 (1997).
55. H. D Blair, T. Y. Pan and J. M. Nicholson, “Intermetallic compound Growth on Ni, Au/Ni, and Pd/Ni Substrates with Sn/Pb, Sn/Ag and Sn Solders”, Electronic Components and Technology Conference, 259 (1998).
56. H. D. Blair, T. Y. Pan, J. M. Nicholson, R. P. Cooper, S. W. Oh and A. R. Farah, Proceedings of 1996 IEEE/CPMT International Electronics Manufacturing Technology Symposium, Oct, 282 (1996).
57. P. K. Khanna, G. Dalke and W. Gust, “Morphology and Long Term Stability of Ni/Ni Interconnections Based on Diffusion Soldering”, Z. Metallkd. 90 (9), 722 (1999).
58. S. Bader, W. Gust and H. Hieber, Acta Metall. Mater. 43 (1), 329 (1995).
59. S. Ahat, L. Du, M. Sheng, L. Luo, W. Kempe and J. Freytag, “Effect of aging on the microstructure and Shear Strength of SnPbAg/Ni-P/Cu and SnAg/Ni-P/Cu Solder Joint”, J. Electron. Mater. 29 (9), 1105 (2000).
60. G. Ghosh, “A Comparative Study of the Kinetics of Interfacial Reaction Between Eutectic Solders and Cu/Ni/Pd Metallization”, J. Electron. Mater. 29 (10), 1182 (2000).
61. K. Zeng, V. Vuorinen, and K. Kivilahti, “Intermetallic Reactions between Lead-Free SnAgCu Solder and Ni(P) Finish on PWBs”, 2001 Electronic Components and Technology Conference, p.693
62. K. L. Lin and Y. C. Liu, IEEE Trans. Adv. Pack. 22 (4), 568 (1999).
63. K. L. Lin and Y. C. Liu, IEEE Trans. Adv. Pack. 22 (4), 575 (1999).
64. W. K. Choi and H. M. Lee, “Effect of Ni Layer Thickness and Soldering Time on Intermetallic Compound Formation at the Interface between Molten Sn-3.5Ag and Ni/Cu Substrate”, J. Electron. Mater. 28 (11), 1251 (1999).
65. A. Zeribi, A. Clark, L. Zavalij, P. Borgesen, and E. J. Cotts, “Rhe Growth of Intermetallic compounds at Sn-Ag-Cu Solder/Cu and Sn-Ag-Cu solder/Ni Interfaces and the Associated Evolution of the Solder Microstructure”, J. Electron. Mater. 30 (6), 1157 (2001).
66. B. L. Young, J. G. Duh, and B. S. Chiou, “Wettability of Electronless Ni in the Under Bump Metallurgy with Lead Free solder”, J. Electron. Mater. 30 (5), 543 (2001).
67. A. S. Zuruzi, S. K. Lahiri. P. Burman, and K. S. Siow, “Correlation Between Intermetallic Thickness and Roughness During Solder Reflow”, J. Electron. Mater. 30 (8), 997 (2001).
68. F. G. Foster, ASTM STP 319, 13(1962).
69. R. N. Wild, NEPCON, 198(1968).
70. D. H. Daebler, Surf. Mount Tech., 43 (1991).
71. C. E. Ho, Y. M. Chen, and C. R. Kao, “Reaction Kinetics of Solder-Ball with Pads in BGA Packages during Reflow Soldering”, J. Electron. Mater.28(11), 1231(1999).
72. C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, “Formation and Resettlement of (AuxSn1-x)Sn4 in Solder Joint of Ball-Grid-Array Packages with the Au/Ni Surface Finish”, J. Electron. Mater.29(10), 1175(2000).
73. C. E. Ho, W. T. Chen, and C. R. Kao, “Interactions Between Solder and Metallization During Long-Term Aging of Advanced Microelectronic Packages”, J. Electron. Mater.30(4), 379(2001).
74. A. M. Minor and J. W. Morris, “Growth of a Au-Ni-Sn Intermetallic Compound on the Solder Substrate Interface after Aging”, Jr., Metall. Mater. Trans. 31A, 798(2000).
75. A. M. Minor and J. W. Morris, Jr., “Inhibiting Growth of the Au0.5Ni0.5Sn4 Intermetallic Layer in Pb-Sn Solder Joints Reflowed on Au/Ni Metallization”, J. Electron. Mater. 29 (10), 1170 (2000).
76. A. Prince, Jr., Less-Common Metals 12, 17 (1967).
77. M. M. Karnowsky and A. Rosenzweig, Trans. Metal. Soc. AIME 242, 2257 (1968).
78. J. Glazer, P. Kramer, and J. W. Morris, Jr, Proc. Surface Mount Intl. Conf., vol. 1.2, 629 (1991)
79. G. Humpston and B. L. Davies, Mater. Sci. Technol. 1, 433 (1986).
80. M. L. Ackroyd and C. A. Mackay, Tin Res. Inst. Publ. No.529 (1997).
81. D. H. Deabler, Surf. Mount Technol. 43 (1991).
82. P. G. Kim and K. N. Tu, “Fast Dissolution and Soldering Reaction on Au foils”, Mater. Chem, and Phys. 53, 165(1998).
83. P. G. Kim and K. N. Tu, “Morphology of Wetting Reaction of Eutectic SnPb Solder on Au Foils”, J. Appl. Phys. 80, 3822(1996).
84. W. K. Warburton and D. Turnbull, Diffusion in Solids-Recent Developments, ed. A. S. Nowick and J. J. burton (New York, Academic Press, 1975), p.171.
85. W. B. Harding, H. B. Pressly. Am. Electroplat. Soc., 50th Annu. Proc. 60 (1963).
86. W. A. Mulholl and D. L. Willyard, Welding J., Res. Suppl., 54 (10), 446 (1974).
87. H. P. Kehrer and E. M. Wenzel, Metall., 30 (10), 1047 (1979).
88. R. Duckett and M. L. Ackroyd, Electroplat. Met. Finish, 29 (5), 13 (1976).
89. K. Banerji and R. F. Darveaux, Microstructures and Mechanical Properties of Aging Materials, ed. P. K. Liaw, R. Viswanathan, K. L. Murty, E. P. Simonen, and D. Frear, (Warrendale, PA: TMS), 1993, p.431.
90. R. Darveaux, K. Banerji, A. Mawer, and G. Dody, Ball Grid Array Technology, ed. J. K. Lau (New York, McGraw-Hill, 1995), p.379.
91. Z. Mei, M. Kaufmann, A. Eslambolchi, and P. Johnson, 1998 Electron. Comp. Tech. Comp. Tech. Proc., 952(1998).
92. K. Kulojarvi, V. Vuorinen, and J. Kivilahti, Microelectron. Int. 15, 20 (1998).
93. S. Anhock, H. Oppwemann, C. Kallmayer, R. Aschenbrenner, L. Thomas, and H. Reichl, 1998 IEEE/CPMT Berlin Intl Manufactureing Tech. Symp. Proc., 156(1998).
94. A. Neumann, Kjekshus, and E. Rost, J. Solid State Chem., 123, 203 (1996).
95. H. G. Song, J. P. Ahn, A. M. Minor and J. W. Morris, Jr., “Au-Ni-Sn Intermetallic Phase Relationships in Eutectic Pb-Sn Solder Formed on Ni/Au Metallization”, J. Electron. Mater. 30 (4), 409 (2001).
96. H. G. Song, J. P. Ahn, and J. W. Morris, Jr., “The Microstructure of Eutectic Au-Sn Solder Bumps on Cu/Electroless Ni/Au”, J. Electron. Mater. 30 (9), 1083 (2001).
97. M. R. Marks, “Effect of Burn-in on Shear Strength of 63Sn-37Pb Solder Joints on an Au/Ni/Cu Substrate”, J. Electron. Mater. 31 (4), 265 (2002).
98. H. D. Blair, T. Pan, and J. M. Nicholson, Proc. 48th Electronic Components and Technology Conf., IEEE Piscataway, NJ, 1998, p.259.
99. P. G. Kim and K. N. Tu, “Fast Dissolution and Soldering Reaction on Au foils”, Mater. Chem, and Phys. 53, 165(1998).
100. C. Y. Liu, J. Li, G. J. Vandentop, W. J. Choi, and K. N. Tu, “Wetting Reaction of Sn-Ag Based Solder Systems on Cu Substrates Plated with Au and/or Pd Layer”, J. Electron. Mater., 30 (5), 521 (2001).
101. J. H. Lee, J. H. Park, D. H. Shin, Y. H. Lee, and Y. S. Kim, “Kinetics of Au-containing Ternary Intermetallic Redeposition at Solder/UBM Interface”, J. Electron. Mater., 30 (9), 1138 (2001).
102. S. W. Chen and Y. W. Yen, “Interfacial Reactions in the Sn-Ag/Au Couple”, J. Electron. Mater., 30 (9), 1133 (2001).
103. J. Y. Park, C. W. Yang, J. S. Ha, C. U. Kim, E. J. Kwon, S. B. Jung, and C. S. Kang, “Investigation of Interfacial Reaction Between Sn-Ag Eutectic Solder and Au/Ni/Cu/Ti Thin Film Metallization”, J. Electron. Mater., 30 (9), 1165 (2001).
104. C. M. Liu, C. E. Ho, W. T. Chen, and C. R. Kao, “Reflow Soldering and Isothermal Solid-State Aging of Sn-Ag Eutectic Solder on Au/Ni Surface Finish”, J. Electron. Mater. 30(9), 1152(2001).
105. 何政恩,蕭麗娟與高振宏,”先進封裝技術中金脆效應對銲點影響探討”,電子與材料雜誌13期p73.
106. K. Y. Lee and M. Li, “Formation of Intermetallic Compounds in SnPbAg, SnAg, and SnAgCu Solders on Ni/Au Metallization”, Metall. Mater. Trans. A, 32A, 2666 (2001).
107. Q. Yu and M. Shiratori, “Fatigue-Strength Prediction of Microelectronics Solder Joints Under Thermal Cyclic Loading”, IEEE Trans. on Components, Packaging, and Manufacturing Technology-Part A, 20 (3), 266 (1997).
108. S. C. Hung, P. L. Zheng, S. C. Lee, S. H. Ho, and H. N. Chen, “Thermal Cyclic Fatigue of the Interconnection of a Flex-Type BGA”, 2000 Electronic Components and Technology Conference, p.1384.
109. R. Ghaffarian and N. P. Kim, “Reliability and Fatigue Analyses of Thermally Cycled Ball Grid Array Assemblies”, IEEE Trans. on Components and Packaging Technologies, 23 (3), 528 (2000).
110. L. Leicht and A. Skipor, “Mechanical Cycling Fatigue of PBGA Package Interconnections”, Microelectronic Reliability, 40, 1129 (2000).
111. R. Darveaux, J. Heckman, A. Syed, and A. Mawer, “Solder Joint Fatigue Life of Fine Pitch BGAs — Impact of Design and Material Choices”, Microelectronic Reliability, 40, 1117 (2000).
112. C. Kanchanomai, Y. Miyashita, and Y. Mutoh, ”Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solder 96.5Sn/3.5Ag”, J. Electron. Mater., 30 (2), 142 (2002)
113. P. L. Tu, Y. C. Chan, C. W. Tang and J. K. Lai, “Vibration Fatigue of μBGA Solder Joint”, 2000 Electronic Components and Technology Conference, p.1369.
114. P. L. Tu, Y. C. Chan, K. C. Hung, and J. K. Lai, “Comparative Study of Micro-BGA Reliability Under Bending Stress”, IEEE Trans. on Advanced Packing, 23 (4), 750 (2000).
115. U. D. Perera, “Evaluation of Reliability of μBGA Solder Joint Through Twisting and Bending”, Microelectronics Reliability, 39, 391 (1999).
116. JEDEC Standard, JESD22-B117 “Ball Shear Test”, JEDEC Solid State Technology Association 2000.
117. R. J. Coyle and P. P. Solan, “The Influence of Test Parameters and Package Design Features on Ball Shear Test Requirements”, 2000 IEEE/CPMT Intl Electronics Manufacturing Technology Symposium, p.168.
118. R. J. Coyle, P. P. Solan, A. J. Serafino, and S. A. Gahr, “The Influence of Room Temperature Aging on Ball Shear Strength and Microstructure of Area Array Solder Balls”, 2000 Electronic Components and Technology Conference”, p.160.
119. R. Erich, R. J. Coyle. G. M. Wenger and A. Primavera, “Shear Testing and Failure Mode Analysis for Evaluation of BGA Ball Attachment”, 1999 IEEE/CPMT Intl Electronics Manufacturing Technology Symposium, p.16.
120. C. H. Zhong and S. Yi, “Solder Joint Reliability of Plastic Ball Grid Array Packages”, Soldering & Surface Mount Technology, 11(1), 44 (1999).
121. S. C. Hung, P. J. Zheng, S. C. Lee, and J. J. Lee, “The Effect of Au Plating Thickness of BGA Substrates on Ball Shear Strength Under Reliability Tests”, 1999 IEEE/CPMT Intl Electronics Manufacturing Technology Symposium, p.7.
122. S. W. Lee, C. C. Yan, Z. Karim, and X. Huang, “Assessment on the Effects of Electroless Nickel Plating on the Reliability of Solder Ball Attachment to the Bond Pads of PBGA Substrate”, 2000 Electronic Components and Technology Conference, p.868.
123. C. K. Shin, Y. J. Baik, and J. Y. Huh, “Effects of Microstructual Evolution and Intermetallic Layer Growth on Shear Strength of Ball-Grid-Array Sn-Cu Solder Joints”, J. Electron. Mater. 30(10), 1323(2001).
124. S. Y. Jang and K. W. Paik, “Eutectic Pb/Sn Solder Bump and Under Bump Metallurgy Interfacial Reactions and Adhesion”, 1998 IEEE/CPMT Electronics Packaging Technology Conference, p. 69.
125. S. Y. Jang and K. W. Paik, “Eutectic Pb/Sn Solder Bump and Under Bump Metallurgy Interfacial Reactions and Adhesion”, Soldering & Surface Mount Technology 10 (3), 29 (1998).
126. S. Y. Jang and K. W. Paik, “Comparison of Electropated Eutectic Sn/Bi and Pb/Sn Solder Bumps on Various UBM System”, 2000 Electronic Components and Technology Conference, p.64.
127. J. R. Oliver, J. Liu, and Z. Lai, “Effect of Thermal Aging on the Shear Strength of Lead-Free Solder Joint”, 2000 International Symposium on Advanced Packaging Materials, p.152.
128. A. B. Vladimirov, V. N. Kaugorodov, S. M. Klotsman, and I. Sh. Trakhtenberg, Phys. Met. Metallogr. 48 (2), 107 (1979).
129. D. C. Yeh and H. B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).
130. B. F. Dyson, J. Appl. Phys. 37, 2375 (1966).
131. D. H. Yeh and H. B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).
132. W. K. Warburton and D. Turnbull, Diffusion in Solids-Recent Developments, ed. A. S. Nowick and J. J. Burton, Academic Press, New York, 1975. p.171.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔