(44.192.10.166) 您好!臺灣時間:2021/03/06 04:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇宗麟
研究生(外文):Tsung-Lin Su
論文名稱:Sn-3.5Ag/Ag厚膜銲錫球格陣列構裝界面反應研究
指導教授:莊東漢莊東漢引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:127
中文關鍵詞:銲錫錫銀無鉛銲錫界面反應球格陣列電子構裝軟銲反應
外文關鍵詞:Sn-3.5Agsolderlead-freesolderingBGApackageinterfacial reaction
相關次數:
  • 被引用被引用:7
  • 點閱點閱:361
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:3
電子、資訊及通訊工業已成為全球工業產值最龐大且成長最迅速的明星產業,科技產品為人類生活帶來便利的同時也為全球環境帶來負擔與破壞,甚至危害人體健康與物種生存;無鉛銲錫之研發與應用儼然成為世界電子產業潮流,無鹵基板與有機清洗劑等周邊應用材料開發亦迫在眉睫,新一代的電子材料與製造技術勢必涵蓋更多的層面與更嚴格的標準。
本研究由單純之錫與銀元素間之軟銲為基礎,續以無鉛銲錫中具備優良機械、潤溼及抗熱疲勞性質之Sn-3.5Ag共晶銲錫,配合銀厚膜網印無毒性之耐高溫氧化鋁陶瓷基板,進行軟銲反應界面之研究,結果發現液態Sn/Ag之界面介金屬化合物成長為擴散控制反應,而液態Sn/Ag厚膜與液態Sn-3.5Ag/Ag厚膜,兩者之界面介金屬化合物成長均為界面控制反應。末以實際BGA構裝尺寸之Sn-3.5Ag錫球(直徑400μm)與銀厚膜銲墊進行迴銲反應,作接點之界面反應型態與可靠度歸納,希有助於Sn-3.5Ag (BGA)/Ag(Thick Film)接點性質的釐清。

The interfacial reactions and the intermetallics growth mechanism between solders and metallized substrates are investigated. The solders used in this study are Sn solder and eutectic Sn-3.5Ag solder. The Ag plate and the screen printed Ag thick films on ceramic Al2O3 plate are employed as metallized substrates. All the intermetallic compounds form at the interface of Sn/Ag、Sn/Ag/ Al2O3、Sn-3.5Ag/ Al2O3 are identified to be phase. The Sn/Ag interfacial reactions at temperatures ranging from 250℃ to 375℃ shows that the growth of such interfacial Ag3Sn intermetallic compound is diffusion controlled with an activation energy of 70.3 kJ/mol. In the other hand, Sn/Ag/ Al2O3 and Sn-3.5Ag/Ag/ Al2O3 reactions are interfacial controlled with similar growth rates in temperatures range from 250℃ to 325℃. The rate of Ag dissolution into liguid solder of Sn/Ag/ Al2O3 reaction is about four times higher than that after Sn-3.5Ag/Ag/ Al2O3 reaction.
In the ball grid array samples, the Sn-3.5Ag solder with the pad of Ag/Al2O3 metallized substrates has the shear strength of 6.01 N .In 75 and 150℃ thermal aging for various time periods the strength of the solder joints are approximately 50﹪of as-reflow one. Observation of the fractured surface indicated that thicken intermetallic compound layer after aging treatment may cause brittle fracture mode.

中文摘要…………………………………………………………….….Ⅰ
英文摘要………………………………………………………………Ⅱ
目錄……………………………………………………………………..Ⅲ
圖目錄…………………………………………………………………..Ⅴ
表目錄……………………………………………………………….….Ⅸ
壹、前言.………………………………………………………………….1
貳、文獻回顧……………………………………………………………3
2.1電子構裝與其發展…………………………………………………..3
2.2無鉛銲錫之應用…………………………………………………….19
2.2.1無鉛製程之相關法令規章………………………………………..20
2.2.2無鉛銲錫種類……………………………………………………..22
2.2.2.1純錫與鉛錫……………………………………………………..24
2.2.2.2無鉛銲錫溫度分類……………………………………………..27
2.3銲錫界面反應……………………………………………………….35
2.4金屬厚膜技術……………………………………………………….38
2.4.1厚膜混成電路……………………………………………………..38
2.4.2厚膜導體應用……………………………………………………..44
2.5球格陣列構裝簡介………………………………………………….47
2.5.1球格陣列之可靠度分析……………………………………….…54
參、實驗方法………………………………………………………….58
3.1 銲錫材料製備……………………………………………………..64
3.2基板材料製備………………………………………………………65
3.3 助銲劑……………………………………………………………...67
3.4 軟銲反應實驗……………………………………………………...68
3.5 TEM試片製備……………………………………………………...69
3.6使用儀器……………………………………………………………70
肆、結果與討論………………………………………………………..73
4.1液態錫與銀基板之軟銲反應………………………………………73
4.2液態錫以及液態Sn3.5Ag與銀厚膜陶瓷基板之軟銲反應………80
4.3 Sn-3.5Ag球格陣列與銀厚膜陶瓷基板軟銲反應………………..97
伍、結論……………………………………………………………….117
陸、參考文獻………………………………………………………….120
圖 目 錄
圖2-1構裝技術隨時間之演變圖………………………………………12
圖2-2裸晶片與各種封裝尺寸比例圖…………………………………12
圖2-3電子構裝的作用……………………………………………… 13
圖2-4電子構裝的四個層次構裝技術…………………………………14
圖2-5第一層次構裝接合技術示意圖…………………………………15
圖2-6針腳插裝和表面黏著技術之構裝方式…………………………15
圖2-7半導體構裝技術發展趨勢………………………………………16
圖2-8針腳插裝技術及表面黏著技術示意圖…………………………16
圖2-9周邊排列式I/O與面矩陣排列示意圖………………………….17
圖2-10 BGA之自動對位效果…………………………………………17
圖2-11新一代構裝技術與封裝材料之應用………………………….18
圖2-12混成電路(Hybrid Circuits)微電子製造技術……………… 41
圖2-13混成微電子電路示意圖……………………………………… 42
圖2-14低溫共燒陶瓷基板示意圖…………………………………… 42
圖2-15網版印刷示意圖……………………………………………….43
圖2-16表面黏著型厚膜可修整晶片電阻…………………………….46
圖2-17插入型電阻之厚膜電阻網路(排列電阻)………………….46
圖2-18打線接合之BGA結構圖………………………………………51
圖2-19晶片與基板間為覆晶接合的結構……………………………51
圖2-20多種Enhanced-BGA之設計及CSP構裝……………………52
圖2-21 BGA構裝中銲錫凸塊的結構…………………………………53
圖2-22覆晶製程中組件膨脹係數不匹配之剪應變示意圖………..…55
圖2-23覆晶製程中電路板發生彎曲之示意圖………………………..56
圖2-24機台推刀與銲錫球的相對位置圖……………………………..57
圖2-25剪力測試其相對破壞模式……………………………………..57
圖3-1實驗總流程圖……………………………………………………59
圖3-2純錫片材與銀板軟銲試驗流程圖………………………………60
圖3-3純錫片與銀厚基板軟銲試驗流程圖……………………………61
圖3-4 Sn-3.5Ag片材與銀厚膜基板軟銲試驗流程圖………………...62
圖3-5 Sn-3.5Ag錫球與球格陣列銀厚膜基板軟銲試驗流程圖….…..63
圖3-6厚膜印刷網板示意圖……………………………………………66
圖3-7網印燒結後之銀厚膜陶瓷基板…………………………………66
圖3-8紅外線真空加熱爐………………………………………………71
圖3-9紅外線迴銲爐……………………………………………………72
圖3-10 MTS-Tytron 250型動態微小負荷試驗機…………………….72
圖4-1固定時間(15分鐘)不同溫度軟銲反應後之液態Sn/Ag板界面介金屬化合物與Sn基地析出物型態…………………………75
圖4-2 250℃軟銲反應後之液態Sn/Ag板界面介金屬化合物與Sn基地析出物型態…………………………………………………….76
圖4-3 325℃軟銲反應15分鐘後之液態Sn/Ag板界面Ta標記型態…77
圖4-4 Ag3Sn介金屬化合物厚度平方(x2)對反應時間(t)關係圖….78
圖4-5液態Sn/Ag板界面Ag3Sn介金屬化合物成長常數(KP)之Arrhenius作圖………………………………………………….79
圖4-6軟銲反應後之液態Sn/Ag厚膜界面介金屬化合物與基地析出物型態…………………………………………………………….86
圖4-7液態Sn/Ag厚膜界面形成之介金屬化合物X-ray繞射圖……87
圖4-8軟銲反應後之液態Sn-3.5Ag/Ag厚膜界面介金屬化合物與基地析出物型態…………………………………………………….88
圖4-9液態Sn-3.5Ag/Ag厚膜界面之介金屬化合物層厚度(XIM)對反應時間(t)關係圖………………………………………………89
圖4-10液態Sn-3.5Ag/Ag厚膜界面之銀厚膜消耗值(Xc= XI - XR)對反應時間(t)關係圖………………………………………….90
圖4-11離子減薄前後之Sn-3.5Ag /Ag厚膜界面型態………………..93
圖4-12 Sn-3.5Ag/Ag厚膜軟銲反應之銲錫基地TEM 圖……………96
圖4-13 Sn-3.5Ag/Ag厚膜於不同迴銲條件下之BGA 接點型態…..103
圖4-14 Sn-3.5Ag/Ag厚膜接點於不同迴銲條件下之界面型態…….104
圖4-15 Sn-3.5Ag/Ag厚膜之銲錫球………………………………….106
圖4-16實驗所選用之240℃峰值溫度迴銲曲線圖………………….107
圖4-17Sn-3.5Ag/Ag厚膜之銲錫球基地組織變化圖………………..108
圖4-18 Sn-3.5Ag/Ag厚膜之銲錫球基地於150℃時效後基地組織變化圖……………………………………………………………...109
圖4-19 Sn-3.5Ag/Ag厚膜接點於75℃時效後之界面型態…………110
圖4-20 Sn-3.5Ag/Ag厚膜接點於150℃時效後之界面型態………..111
圖4-21推球剪強度與時效條件關係圖………………………………112
圖4-22 Sn-3.5Ag/Ag厚膜接點於75℃時效後之斷面型態………….113
圖4-23氧化鋁基板表面與Sn-3.5Ag/Ag厚膜接點斷面型態比較圖..114
圖4-24 Sn-3.5Ag/Ag厚膜接點延性斷面之凹洞型態………………..115
圖4-25 Sn-3.5Ag/Ag厚膜接點於150℃時效後之斷面型態………..116
表 目 錄
表2-1第一層次構裝接合技術比較表………………………………….7
表2-2傳統打線與現代覆晶構裝技術結合BGA後之各項特性比較…9
表2-3各國國際機構針對迴銲、波銲及手銲所建議之無鉛合金……22
表2-4無鉛銲錫合金元素之選擇要件…………………………………23
表2-5無鉛銲錫中常添加之合金元素…………………………………25
表2-6無鉛銲錫組成與熔點對照表……………………………………28
表2-7混成電路之優點比較表…………………………………………39
表2-8常見之陶瓷基板材料性質表……………………………………40
表3-1助銲劑SMQ TACFLUX 005 之物理性質……………………..67
表4-1不同軟銲反應條件下液態Sn/Ag厚膜之各項數值表…………85
表4-2不同軟銲反應條件下液態Sn-3.5Ag/Ag厚膜之各項數值表…85
表4-3各迴銲條件與接點剪強度值表………………………………..105

1. 張俊彥,鄭晃忠,”積體電路製程及設備技術手冊”,中華民國電子材料與元件協會等出版,pp7-85.(1998)
2. R.R. Tummala, E.J. Rymaszewski and A.G.. Klopfenstein, “Microelectronics packaging Handbook”, Chapman, New York,(1997)
3. M.L. Minges, “Packaging”, Electronic Materials Handbook, 1, ASM Int., Mat. Park, Ohio,(1989)
4. D.P. Seraphim, R.C. Lasky and C-Y. Li, “Principle of Electronic Package”, McGraw-Hill, New York,(1993)
5. 潘金平,“基板型半導體構裝市場及技術趨勢”,工業材料,151,pp.78-85. (1999)
6. 孔令臣,“覆晶凸塊技術”, 工業材料,139,p.155.(1998)
7. A.H. Charles, “Electronic Packaging and Interconnection Handbook”, 2nd Edition, McGraw-Hill, New York,(1997)
8. J.H. Lau, “Flip Chip Technologies”, McGraw-Hill, New York,(1995)
9. J.L. Huang, B.S. Yau, C.Y. Chen, et al., “The electromagnetic shielding effectiveness of indium tin oxide films”, Vol. 27, No. 3, pp.363-365.(2001)
10.Y. Tsukada, Y. Mashimoto, T. Nishio and N. Mii, “Reliability and Stress Analysis of Encapsulated Flip Chip Joint on Epoxy Base printed Circuit Board”, Proceedings of the 1st ASME/JSME Advances in Electronic Packaging Conference, Milpitas, CA, pp.827-835.(April 1992)
11.Y. Guo, W. T. Chen, and K. C. Lim, “Experimental Determinations of Thermal Strains in Semicondutor Packaging Using Moire Iterferometry”, Proceedings of the 1stASME/JSME Advances in Electronic Packaging Conference, Milpitas, CA, pp. 779-784.(April 1992)
12.Y. Tsukada, S. Tsuchida and Y. Mashimoto, “Surface Laminar Circuit Packaging”, Proceedings of IEEE Electronic Components & Technology Conference”, San Diego, CA, pp. 22-27.(May 1992)
13.D.O. Powell and A. K. Trivedi, “Flip-Chip on FR-4 Integrated Circuit Packaging”, Proceedings of IEEE Electronic Components & Technology Conference”, Orlando, FL, pp. 182-186.(June 1993)
14.Y. Tsukada , “Solder Bumped Flip Chip Attach on SLC Board and Multichip Module”, in Chip On Board Technologies for Multichip Modules, edited by J. H. Lau, Van Nostrand Reinhold, New York, NY, pp.410-443.(1994)
15.黃淑禎,李巡天,陳凱琪,“新世代半導體封裝材料技術與發展趨勢”,170,pp.86-99.(2001)
16.W.L. Winterbottom, “Converting to Lead-Free Solders: An Automotive Industry Perspective”, JOM, pp.20-24.(1993)
17.C.C. Tsui, “Pad Redistribution Technology for Flip Chip Technology”, Electronic Components and Technology Conference, pp.1098-1102. (1998)
18.L. Bernstein and H. Bartholomew, Trans. Metall. Soc. AIME, 236, , pp.405-412. (1966)
19.Q.V. Betzabet, D.R. Smith, M.W. Kahng and J.M. Hernandez et al “Lead-binding proteins in brains tissue of environmentally lead-exposed humans”, Chemico-Biological Interactions, 98, pp.193-209.(1995)
20.P. T. Vianco, “Solder Alloys: A Look at the Past, Present and Feature”, Welding Journal, pp. 45-49. (1997)
21.B. Trumble, “Get the Lead out”, IEEE Spectrum, pp. 55-60. (1998)
22.P.T. Vianco and D.R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, JOM, pp.14-19.(July 1993)
23.C.F. Boutron, U. Gorlach, J.P. Candelon, M. Bolshov and R. Delmas, “Concentrations of Lead, Copper, Cadmium and Zinc in Greenland Snows Since the late 1960s”, Nature, 353, pp.153-156.(1991)
24.M.D. Settle and C.C. Patterson, “Lead in Albacore:Guide to Lead Pollution in Americans”, Science, 207, pp.1167-1176. (1980)
25.D.R. Smith and A.R. Flegal, “Recent Trends of Lead in the Biosphere”, AMBIO,(1995)
26.C. Patterson, J. Ericson, M. Manca-Krichten and H. Shirahata, “Natural Skeletal Levels of Lead in Homo Sapiens Sapiens Uncontaminated by Technological Lead”, Sci. Total Environ., 107(1991)pp.205-236.
27.A.R. Flegal and D.R. Smith, “Lead Levels in Preindustrial Humans”, N. Engl. J. Med, 326,(1992), pp.1293-1294.
28.E.P. Wood, K.L. Nimmo, “Search of New Lead-free Electronic Solders”, J. Electron. Mater., 23(8),(1994), pp.709-713.
29.E.R. Monsalve, “Lead Ingestion Hazard in Hand Soldering Environments”, Proceeding of The 8th Annual Soldering Technology and Product Assurance Seminar, Naval Weapons Center, China Lake, CA.(February 1984)
30.Environmental Protection Agency, National Air Quality and Emission Trend Report, 1989, EPA-450/4-91-003, Research Triangle Park, NC.
31.Asm International, Electronic Material Handbook, Vol. 1, Materials Park, OH, pp. 965-966. (1989)
32.C. Handwerker, “Lead-free Solders: A Change in the Electronics Infrastructure”, Circuitree , pp.2-6.(1999),
33.”Electronics Goes Green 2000+”, Conference(2000)
34. T.P. Vianco, Development of alternatives tp lead-bearing solders, in :Proceedings of the Technical Program on Surface Mount International, 19 August-2 September 1993, San Jose, CA.
35.N.R. Bonda and I.C. Noyan, “Effect of the Specimen Size in Predicting the Mechanical Properties of PbSn Solder Alloys”, IEEE, Vol.19, No 2, (June 1996)
36. P. Di. Robert, “Significant Characteristics of Tin and Tin-Lead Contact Electrodeposits for Electronic Connectors”, Burndy Corp., Norwalk , Conn. (April 1993)
37.M. McCormack and S. Jin, “New, Lead-Free Solders”, Journal of Electronic Materials”, Journal of Electronic Materials, Vol. 23, No. 7, pp. 715-720.(1994,)
38. M. McCormack and S. Jin, “Improved Mechanical Properties in New, Pb-free Solder Alloys”, Journal of Electronic Materials ,Vol. 23, No. 8, pp. 635-640.(1994)
39.張啟運, ”電子組裝業無鉛填料的進展”, 銲接與切割, Vol.7, pp.10-17. (1997)
40.J. Glazer, “Metallurgy of low temperature Pb-free solders for electronic assembly”, International Materials Reviews, Vol. 40, No. 2, 1994, pp.65-93.(1994)
41.I. Artaki and A.M. Jackson, “Evaluation and Lead-Free Solder Joints in Electronic assemblies”, Journal of Electronic Materials,Vol. 23, No. 8, pp.757-764.(1994)
42.C. Lea, A Scientific Guide to Surface Mount Technology, Electrochemical Publications Ltd., GB-Port Erin, British Isles, pp. 378-379.(1988)
43.W.R. Lewis, Notes on Soldering, Tin Research Institute, pp.66.(1961)
44.Asm International, Electronic Material Handbook, Vol. 1, Materials Park, OH, pp. 1161-1162.(1989)
45.A.G. Robert. and E.F. Morris, “Growth of η phase Scallops and Whiskers in Liquid Tin-Solid Copper Reaction Couples”, JOM, pp.33-38. (Jun 2001)
46.K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case”, Mat. Chem. and Phys.,46, pp.217-223 (1996)
47.K.N. Tu, Fiona Ku, and T.Y. Lee, “Morphological Stability of Solder Reaction Products in Flip Chip Technology”, Journal of Electronic Materials, Vol. 30, No. 9, pp. 1129-1132.(2001)
48. K. L. Lin and Y. C. Liu, IEEE Trans. Adv. Pack. 22 (4), 568 (1999).
49. K. L. Lin and Y. C. Liu, IEEE Trans. Adv. Pack. 22 (4), 575 (1999).
50.W. K. Choi and H. M. Lee, “Effect of Ni Layer Thickness and Soldering Time on Intermetallic Compound Formation at the Interface between Molten Sn-3.5Ag and Ni/Cu Substrate”, J. Electron. Mater. 28 (11), 1251 (1999).
51.A. Zeribi, A. Clark, L. Zavalij, P. Borgesen, and E. J. Cotts, “Rhe Growth of Intermetallic compounds at Sn-Ag-Cu Solder/Cu and Sn-Ag-Cu solder/Ni Interfaces and the Associated Evolution of the Solder Microstructure”, J. Electron. Mater. 30 (6), 1157 (2001).
52. B. L. Young, J. G. Duh, and B. S. Chiou, “Wettability of Electronless Ni in the Under Bump Metallurgy with Lead Free solder”, J. Electron. Mater. 30 (5), 543 (2001).
53. A. S. Zuruzi, S. K. Lahiri. P. Burman, and K. S. Siow, “Correlation Between Intermetallic Thickness and Roughness During Solder Reflow”, J. Electron. Mater. 30 (8), 997 (2001).
54.Sungk. Kang, Amitk. Sarkhel, “Lead-free Solders for Electronic Packaging”, Journal of Electronic Materials, vol. 23,No.8, pp.701-707.(1994)
55.Z. Mei, J.W. Morris, Jr., “Characterization of Eutectic Sn-Bi Solder Joints”, Jounal of Electronic Materials, Vol 21, No 6, pp.599-607.(1992)
56.B. Cardin and H. Waxman,”Lead-based Paint Hazard Abatement Act”. (1991)
57.A.D. Romig Jr., F.G. Yost and P.F. Hlava,”Intermetallic Layer Growth in Cu/Sn-In Solder Joints”, Microbeam Analysis, pp.87-92.(1984)
58.J. Glazer, “Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly”, International Materials Reviews, Vol 40, No 2, pp.65-93.(1995)
59.W. J. Tomlinson and I. Collier, “The Mechanical Properties and Microstructures of Copper and Brass Joints Soldered with Eutectic Tin-Bismuth Solder”, J. Mater. Sci., 22, pp. 1835-1839.(1987)
60. L.E. Felton, C. H. Raeder, and D. B. Knorr, “The Properties of Tin-Bismuth Alloy Solders”, JOM, pp. 28-32.(1993)
61. Z. Mei and J. W. Morries, “Characterization of Eutectic Sn-Bi Solder Joints”, J. Elect. Mat., 21, 6, pp. 599-607.(1992)
62. C. H. Raeder, L. E. Felton, V. A. Tanzi and D. B. Knorr, “The Effect of Aging on Microstructure, Room Temperature Deformation, and Fracture of Sn-Bi/Cu Solder Joints”, J. Elect. Mat., 23, 7, pp.611-617.(1994)
63.J.W. Morris, Jr., J.L. Freer Goldstein, and Z. Mei, “Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders”, JOM, pp.25-27.(July 1997)
64.Y.G. Lee and J.G. Duh, “Phase Analysis in The Solder Joint of Sn-Cu Solder/IMCs/Cu Substrate”, Elsevier Science Inc., pp.143-160.(1999)
65.T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed, Materials Park,OH:ASM Intl.(1991)
66.B.David and Wayne D. Kaplan, “Joining Processes: an Introduction” , John Wiley and Sons Ltd,(1997)
67.E.P. Wood and K.L. Nimmo, “In Search of New Lead-free Electronic Solders”, Journal of Electronic Materials, Vol. 23, pp.709-713.(1994)
68.W. Yang and R. W. Messler, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, Journal of Electronic Materials, 23, pp. 765-772. (1994)
69. M. Harada and R. Satoh, “Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Microbonding”, IEEE Trans. on Comp.,Pac. and Manu. Tech., 13, 4, pp.736-742.(1990)
70. P. Biocca, “Global Update on Lead-Free Solders”, SMT, June, pp. 64-67.(1999)
71. T. Laine-Ylijoki, H. Steen and A. Forsten, “Development and Validation of a Lead-Free Alloy for Solder Paste Applications”, IEEE Trans. on Comp.,Pac. and Manu. Tech., Part C, 20, pp.194-198. (1997)
72.V.I. Igoshev, J.I. Kleiman, D. Shangguan, S. Wong, and U. Michon, “Fracture of Sn-3.5Ag Solder Alloy Under Creep”, Journal of Electronic Materials, vol.29,No.12, pp.1356-1361.(2000)
73.賴玄金, “邁向21世紀之綠色電子產品國際會議(EGG2000+)紀要”, 電子與材料第8期, pp. 111-115.
74.D.R. Flanders, E.G. Jacobs, and R.F. Pinizzotto, “Activation Energies of Intermetallic Growth of Sn-Ag Eutectic Solder on Copper Substrates”, Journal of Electronic Materials, vol.26, No.7, pp.883-887.(1997)
75.C.H. Ho, S.Y. Tsai, and C.R. Kao, “Reaction of Solder with Ni/Au Metallization for Electronic Packages During Reflow Soldering”, IEEE Tran. on Advanced Packaging, Vol. 24, No. 4, Nov, pp.493-498.(2001)
76.M.E. Ferguson, C.D. Fieselman, and M.A. Elkins, “Manufacturing concerns when soldering with Au plated component lead or circuit board pads”, IEEE Trans. Comp. Package Manufact. Technology C, Vol. 20, July, pp.188-193.(1997)
77.C. M. Liu, C. E. Ho, W. T. Chen, and C. R. Kao, “Reflow Soldering and Isothermal Solid-State Aging of Sn-Ag Eutectic Solder on Au/Ni Surface Finish”, J. Electron. Mater. 30(9), 1152 (2001).
78. B.H. Chiou, K.C. Liu, J.G. Duh, and P. Samy Palanisamy, “Intermetallic Formation on the Fracture of Sn/Pb Solder and Pd/Ag Conductor Interfaces”, IEEE Trans. on Components Hybrids and Manufacturing Technology, Vol. 13, No. 2, pp.267-274.(June 1990)
79. B.H. Chiou, K.C. Liu, J.G. Duh, and P. Samy Palanisamy, “Temperature Cycling Effects Between Sn/Pb Solder and Thick Film Pd/Ag Conductor Metallization”, IEEE Trans. on Components Hybrids and Manufacturing Technology, Vol. 14, No. 21 Mar, pp.233-237.(1991)
80.V. Simic and Z. Marinkovic, “Room Temperature Interactions in Ag-Metals Thin Film Couples”, Thin Solid Films, 61, pp.149-160. (1979)
81.G. Y. Li, “Diffusion and intermetallics formation between Pd/Ag metallization and Sn/Pb/Ag solder in surface mount solder joints”, Materials Science and Engineering, B57, pp.116-126. (1999)
82. Katsuaki, JOM, Vol.13, No.2, p.343. (1991)
83. S. P. S. Sangha and G. Humpston, “Shear Strength of Diffusion Soldered Joints”, GEC Journal of Research, Vol.10, No.3, pp.174-178 (1993)
84. D. M. Jacobson and S. P. S. Sangha, “Novel Applications of Diffusion Soldering”, Soldering & Surface Mount Technology, No.23, pp.12-15 (Jun 1996)
85. Y. Kariya and M. Otsuka, J. Electron. Mater., 27 (7), 866 (1998)
86. Y. Kariya and M. Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn, and In) Solder Alloys”, J. Electron. Mater., 27 (11), 1229 (1998)
87. F. Guo, J. Lee, S. Choi, J. P. Lucas, T.R. Bieler, and K.N. Subramanian, “Processing and Aging characteristics of Eutectic Sn-3.5Ag Solder Reinforced with Mechanically Incorporated Ni Particles”, Journal of Electronic Materials, Vol. 30, No. 9, pp. 1073-1082.(2001)
88. G. Ghosh, “A Comparative Study of the Kinetics of Interfacial Reaction Between Eutectic Solders and Cu/Ni/Pd Metallization”, J. Electron. Mater. 29 (10), p.1182 (2000).
88. L. Ye, Z. Lai, J Liu, and Tholen, “Recent Achievement in Microstructure Investigation of Sn0.5Cu3.4Ag Lead-free Alloy by Adding Boron”, International Symposium on Advanced Packaging Materials, pp. 262-267.(1999)
89. W.G.. Frank, et al., “High Temperature Lead-Free Solder for Microelectronics”, JOM, pp. 17-20.(June 2001)
91.R.A. Swalin, “Thermodynamics of Solid”,2nd edition John and Sons New York, (1972)
92. C.M. Liu, C.E. Ho, W.T. Chen, and C.R. Kao, “Reflow Soldering and Isothermal Solid-State Aging of Sn-Ag Eutectic Solder on Au/Ni Surface Finish”, Journal Electronic Materials, Vol.30, No. 9, p1152-1156.(2001)
93. J.Y. Park, C.W. Yang, J.S. Ha, C.U. Kim, E.J. Kwon, S.B. Jung, and C.S. Kang, “Investigation of Interfacial Reaction Between Sn-Ag Eutectic Solder and Au/Ni/Cu/Ti Thin Film Metallization”, Journal Electronic Materials, Vol. 30, No.9, pp.1165-1170.(2001)
94. W.K. Choi and H.M. Lee, Journal of Electronic Materials, Vol.28, p.1251.(1999)
95. C.P. Chen and Y.A. Chang, Diffusion in Ordered Alloys, Ed. B. Fultz, R.W. Cahn, and D. Gupta, TMS, Warrendale, PA, p.169.(1993)
96. J.J. Licari and L.R. Enlow, Hybrid Microcircuit Technology Handbook, 2nd Edition, Noyes Publication, New Jersey, (1998)
97. Hibrid Microelectronics Handbook, edited by J.E. Sergent and C.A. Harper, 2nd edition, New York,(1995)
98. D.W. Hamer and J.V. Biffers, “Trimming Thick Film Elements”, in Thick Film Hybrid Microcircuit Technology, pp. 159-192.(1972)
99. H.T. Sawhill et.al., “Low Temperature Co-firable Ceramics with Co-fired Resistors”, Multichip Modulus, edited by R.W. Johnson et.al., pp.472-479, IEEE press, New York, (1989)
100. G.. Palmer and G..M. Newton, “3-D Packaging Using Low Temperature Co-fired Ceramic (LTCC)”, ICEMM Proceeding”, 93, pp. 307-319(1993).
101. Y.P. Diehi et. Al., “RF Flip-Module BGA Package”, IEEE Trans. on Advanced Packaging, Vol. 22, pp. 111-115.(May 1999)
102. K. Hideki et. Al., “The Flip Chip Bump Interconnection for Millimeter-Wave GaAs MMIC”, IEEE Trans, on Electronics Packaging Manufacturing, Vol. 22, pp. 23-28.(Jan 1999)
103. S. Kim et. al., “Suppression of Leakage Resonance in Coplanar MMIC Package Using a Si Sub-Mount Layer”, IEEE trans. Microwave Theory Technology, Vol. 48, pp. 2664-2669.(Dec. 2000)
104. H. Yamamoto, Y. Kurokawa, Y. Shimada, and T. Kamata, “Metallization Development and Application for Aluminum Nitride Substrates”, Electric Components Conference, Proceedingsm, 39th, pp. 23-28.(1990)
105. N. Koopman, “Flip Chip Interconnections”, Concise Encyclopedia of Semiconducting Materials and Relatived Technologies, Pergamon Press, London, p.184.(1992)
106. Q. Yu and M. Shiratori, “Fatigue-Strength Prediction of Microelectronics Solder Joints Under Thermal Cyclic Loading”, IEEE Trans. on Components, Packaging, and Manufacturing Technology-Part A, 20 (3), 266 (1997).
107. S. C. Hung, P. L. Zheng, S. C. Lee, S. H. Ho, and H. N. Chen, “Thermal Cyclic Fatigue of the Interconnection of a Flex-Type BGA”, 2000 Electronic Components and Technology Conference, p.1384.(2000)
108. R. Ghaffarian and N. P. Kim, “Reliability and Fatigue Analyses of Thermally Cycled Ball Grid Array Assemblies”, IEEE Trans. on Components and Packaging Technologies, 23 (3), p.528. (2000).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔