(54.236.62.49) 您好!臺灣時間:2021/03/06 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何家驊
研究生(外文):C. H. Ho
論文名稱:自旋依賴穿隧與層間交換偏耦合之介面效應研究
論文名稱(外文):Spin-dependent tunneling and interlayer exchange bias coupling effect
指導教授:林敏聰林敏聰引用關係姚永德姚永德引用關係
指導教授(外文):Minn-Tsong LinY. D. Yao
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:170
中文關鍵詞:自旋依賴穿隧交換偏耦合層間交換偏耦合磁極化係數遲緩效應互相擴散穿隧磁電阻交換場
外文關鍵詞:Spin-dependent tunnelingexchange bias couplinginterlayer exchange bias couplingmagnetic polarizationmagnetic relaxationinterdiffusionTunneling magnetoresistanceExchange field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
我們製作自旋依賴穿隧接面,Co / Al-O / Co (CoFe) / NiFe,來研究外加的中間層Co或CoFe 對於穿隧磁電阻的影響。接面樣品的高品質是以高解析度穿透式電子顯微鏡的橫截面影像與電子能量損失能譜圖像來確定。對於接面樣品的上電極層具有外加中間層,若外加Co或CoFe中間層分別薄於0.8或1.0奈米時,接面樣品的穿隧磁電阻值將會隨外加的中間層厚度變厚而單調地增加;若Co中間層的厚度範圍介於0.8 ~ 2.0奈米、而CoFe中間層介於1.0 ~ 2.0奈米時,接面樣品的穿隧磁電阻值將會分別變為沒有中間層的穿隧磁電阻值之2.16倍、4.45倍。穿隧磁電阻值的增加可能是由於上電極層的等效磁極化係數隨外加中間層的增加而增加;也可能是因為不同中間層物質造成不同的自旋翻轉因子。
另一方面,我們也研究自旋依賴穿隧接面的熱穩定性,且集中在穿隧接面的絕緣層厚度隨加熱退火溫度的增加而降低;介面粗糙度隨溫度增加而增加;與Fe、Co、Ni、Al及O五種元素的互相擴散效應。我們發現當加熱退火溫度增加時,原本有約16 %的穿隧磁電阻值將隨絕緣層厚度的降低與介面粗糙度的增加而降低至約0 %。而且,當加熱退火溫度增加到400 oC時,很明顯的,O元素是往外擴散、且Al元素幾乎是固定不動的,這將造成穿隧接面樣品的絕緣層因為外加的溫度而破壞,進而使穿隧磁電阻值下降。
更進一步,我們研究穿隧磁電阻值隨著旋轉方向的變化,這裡的旋轉角度是定義為外加磁場與穿隧接面之膜面的夾角。我們發現穿隧接面的穿隧磁電阻值是跟旋轉夾角有著極大的關係,若穿隧接面之膜面平行(垂直)於外加磁場時,磁場相依性的穿隧電阻值將會漸漸降低且趨近於飽和(先降低到某一最低值之後,又再上升)。另一方面,對於外加磁場幾乎垂直於穿隧接面之膜面時,其低磁場範圍的穿隧磁電阻曲線將呈現異常行為,即,未過零磁場前,穿隧電阻值已經達到最高值,這與一般的穿隧磁電阻曲線相反,這可能是因為介面間的自旋靜磁能與穿隧接面的形狀異向性隨磁場強度的競爭效應。
對於NiO / Cu / NiFe三層膜結構的層間交換偏耦合系統(反鐵磁性層/非鐵磁性層/鐵磁性層),我們發現其磁特性隨著溫度呈現強烈的變化,且層間交換偏耦合隨非鐵磁性層厚度之振盪是熱能驅動的模式。在低溫時,層間交換場之絕對值隨著非鐵磁性層厚度的增加而逐漸降低;當外加的溫度升高且接近反鐵磁性層的臨界溫度時,層間交換場將隨非鐵磁性層厚度的增加而形成振盪行為。在這裡,RKKY耦合隨溫度的變化、反鐵磁性耦合之溫度相依性與介面磁偶極的耦合強度,三者間的互相競爭將是層間交換場隨著溫度呈現強烈變化的原因。
交換偏耦合與層間交換偏耦合系統之磁性遲緩效應在這裡首先被發現,此效應明顯的與溫度及反鐵磁性有極大關係。其遲緩時間與熱能驅動的磁性遲緩效應會依循數種磁後效應的溫度關係。最後,在層間交換偏耦合中,其磁性遲緩效應也是存在,然而,因為交換偏耦合的溫度變化與RKKY耦合的溫度相依性,其整體效應對於磁區壁的移動影響將產生複雜的溫度相依性之磁性遲緩結果。

Spin-dependent tunnel junctions, Co / Al-O / Co (CoFe) / NiFe, were fabricated to investigate the effect of the additional Co (CoFe) interlayer on tunneling magneto- resistance. The quality of the junction was examined with a cross-sectional image ge- nerated by high-resolution transmission electron microscopy, and an electron energy loss spectra mapping. For junctions with a Co (CoFe) interlayer in the top electrode thinner than 0.8 nm (1.0 nm), the tunneling magnetoresistance ratio increases with interlayer thickness. For junctions with a 0.8 ~ 2.0 nm Co (1.0 ~ 2.0 nm CoFe) interlayer in the top electrode, the tunneling magnetoresistance ratio reaches the maxi- mum value of 2.16 (4.45) times that without Co (CoFe) interlayer in the top electrode. The increase in the tunneling magnetoresistance ratio may be attributed to the increa- sed effective ferromagnetic electrode polarization and the various spin-flip scattering factors.
On the other hand, the thermal stability of the spin-dependent tunnel junctions were investigated. And we focused on the roughness, thickness and diffusion behavior among ferromagnetic layers and the Al-O insulating layer after annealing. The tun- neling magnetoresistance ratio, which is 16 % for the as-deposited specimen, degrad- ed with decreasing insulator thickness and increasing interfacial roughness. Moreover, the oxygen diffuses outward and the aluminum almost stays undiffused at the annea- ling temperature up to 400 oC. The quality of amorphous Al-O insulator deteriorates due to the outward diffusion of the oxygen, causing the degradation tunneling magne- toresistance ratio.
Furthermore, the evolution of tunneling magnetoresistance as function of the angle between the external field and the film plane of the spin-dependent tunnel junctions was studied. In this work, the field dependence of the tunnel resistance (or the magnetoresistance curve) was found to be strongly angle-dependent. For the fields applied in the direction nearly parallel (perpendicular) to the film plane, the field dependent tunnel resistance was found to decrease and approach to saturation (decrease with field in the low field range and increase in the high field range). On the other hand, the tunneling magnetoresistance curve for angle near 90o reveals an anomalous behavior that the highest tunnel resistance is reached before the zero field point. The roughness induced magnetostatic coupling and the shape anisotropy may the causes of this anomalous tunneling magnetoresistance curve.
A strong temperature dependence of the characteristic behavior of the interlayer exchange bias coupling was observed in a ferromagnet / nonmagnetic metal / antife- rromagnet trilayer system (NiO/Cu/NiFe). The oscillation of the interlayer exchange bias coupling was found to be thermally assisted. At low temperature, the exchange bias field decreased monotonically with the Cu spacer thickness. Increasing the tem- perature close to the Neél temperature, the interlayer exchange bias field became osci- llatory with the Cu spacer thickness. A simple picture of the temperature-dependent competition between the RKKY-like coupling and the antiferromagnetic coupling wi- thin the antiferromagnetic layer as well as the interlayer dipolar interaction is propo- sed to explain these findings.
The magnetic relaxation behaviors of the exchange bias system and the interlayer exchange bias system were first found in this study. The effect depends clearly on the temperature and on the formation of the antiferromagnetism of the pinning layer. The temperature dependence of the fitted relaxation time and the thermal driven relaxation follow several magnetic after-effects. Finally, the interlayer exchange bias system with the thin spacer also presents the relaxation behavior of the magnetization. However, the complicated affection of the sum of the exchange coupling and the RKKY coupling on the domain wall dynamics results in the complicated temperature dependent relaxation time.

Abstract (in English)………………………………………….………………………i
Abstract (in Chinese)………………………………………..………………………iii
List of Figures……………………………………………………………………......ix
List of Tables………………………………………………….……………………xvii
Chapter 1 Introduction………………………………………………………………1
§1-1 The development of Spintronics………………………………………………1
§1-2 Tunneling magnetoresistance and Exchange bias systems…………...……….7
Chapter 2 Basic Concepts and Theories………………..……………………….….9
§2-1 Magnetoresistance by electron scattering………..………………………..…..9
§2-1-1 Ordinary magnetoresistance effect………………..………………...……9
§2-1-2 Anisotropic magnetoresistance effect…...………………………………11
§2-1-3 Giant magnetoresistance effect……….…………………………………14
§2-2 Tunneling magnetoresistance effect………………………………………….19
§2-2-1 Tunneling without spin-flip scattering………………...……………..….19
§2-2-2 Tunneling with spin-flip scattering……………………………………...21
§2-2-3 Quantum calculation in spin-dependent tunneling…………………….23
§2-2-4 The barrier width and height…………………………………………...25
§2-2-5 Influence of the bias voltage on the tunneling magnetoresistance…….27
§2-2-6 Pseudo-spin-valve tunneling magnetoresistance effect………………..28
§2-3 Exchange bias coupling effect……………………………………………..30
§2-3-1 Exchange field……………………..……………………………………30
§2-3-2 Spin-valve tunneling and giant magnetoresistance…………..………….33
§2-3-3 Random field model……………………………...……………………..34
Chapter 3 Experimental Principles and Methods………...………………………36
§3-1 Electric measurements…………………………………………………….…36
§3-1-1 4-probe method……………………………………………………….....36
§3-1-2 4-probe method in current-perpendicular to film plane geometry……....37
§3-1-3 2-probe method………………………………………………………….39
§3-1-4 Magnetoresistance measurement system……………………………..…40
§3-2 Magnetic measurements………………………………………………...……41
§3-2-1 Superconducting Quantum Interference Device…………………...……41
§3-2-2 Magneto-Optical Kerr Effect…………………………………………....42
§3-3 Material and structure measurements ……………………………………….43
§3-3-1 High-Resolution Transmission Electron Microscopy……………...……43
§3-3-2 Electron Energy Loss Spectra……………………………………...……43
§3-3-3 Energy Dispersive X-ray Spectrometer……………………………...….44
§3-4 Sample fabrication…………………………………………………………...44
§3-4-1 High-vacuum magnetron sputtering system…………………………….44
§3-4-2 Growth of spin-dependent tunnel junction…………………………..….47
-Transport properties of metallic Al after oxidation……………………...…..48
-Effect of the plasma oxidation time on the spin-dependent tunneling…...….52
Chapter 4 Studies of Tunneling Magnetoresistance………...……..…………..….59
§4-1 Magnetoresistance of spin-dependent tunnel junctions with composite electrodes……………...………………………………………...……………59
§4-1-1 Experimental results and analysis…………………………………….…59
§4-1-2 Electron spin polarization and spin-flip scattering effect………………66
§4-1-3 Effect of ferromagnetic interlayer on tunneling magnetoresistance…….70
§4-2 Inter-diffusion effect on tunneling magnetoresistance………………………74
§4-2-1 Experimental results and analysis………………………………………75
§4-2-2 Discussion……………………………………………………………….83
§4-3 Angle-dependent tunneling magnetoresistance……………………………87
§4-3-1 Experimental results and analysis………………………………………88
§4-3-2 Discussion……………………………………………………………….95
Chapter 5 Studies of Exchange Bias Coupling……..……..………………………98
§5-1 Thermal assisted interlayer exchange bias coupling…..……………………..98
§5-1-1 Basic concept of RKKY interlayer coupling……...…………………….99
§5-1-2 Experimental results and analysis…………………………………….100
§5-1-3 RKKY coupling and dipole-dipole interaction…...……………………110
§5-2 Magnetic relaxations of exchange bias and interlayer exchange bias systems
……………………………………………………………………………....113
§5-2-1 Experimental results and analysis…...…………………………………114
§5-2-2 Model of relaxation behavior………..…………………………………123
Chapter 6 Conclusion………………………………….…………………………..129
Reference…………………………………………………………………………...132
摘要(英文)………………………………………………………………………...…..i
摘要(中文)…………………………………………………………………………...iii
圖目錄……………………………………………………………………...…………ix
表目錄………………………………………………………………………………xvii
第一章 簡介………………………………………………………………………..…1
§1-1 自旋電子學發展………………………………………..…………………….1
§1-2 穿隧磁電阻系統及交換偏耦合系統…………………...……………………7
第二章 基礎概念與理論………………………………………..……………………9
§2-1 電子散射式磁電阻效應……………………………………………………...9
§2-1-1 普通磁電阻效應………………………………………………………...9
§2-1-2 異向性磁電阻效應………………………………………………….....11
§2-1-3 巨磁電阻效應………………………………………………………….14
§2-2 穿隧磁電阻效應………………………………………….…………………19
§2-2-1 無自旋翻轉散射之穿隧..………………………………………….....19
§2-2-2 含自旋翻轉散射之穿隧………………..…………………………….21
§2-2-3 自旋依賴穿隧的量子計算…………………………………………….23
§2-2-4 位能帳寬與高………………………………………………………….25
§2-2-5 偏壓對穿隧磁電阻的影響…………………………………………….27
§2-2-6 偽自旋閥穿隧磁電阻效應…………………………………………….28
§2-3 交換偏耦合效應………………………………………………………...…..30
§2-3-1 交換場………………………………………………...………………..30
§2-3-2 自旋閥穿隧磁電阻及巨磁電阻…………………….…………………33
§2-3-3 無序場模型…………………………………………………………….34
第三章 實驗原理與方法………………………………………...………………….36
§3-1 電性量測………………………………………………...…………………..36
§3-1-1 四點量測法………………………………………….…………………36
§3-1-2 電流垂直膜面方式之四點量測法………………………………….…37
§3-1-3 兩點量測法………………………………………….…………………39
§3-1-4 磁電阻測量系統…………………………………….…………………40
§3-2 磁性量測…………………………………………………………………….41
§3-2-1 超導量子磁量干涉儀………………………………………………….41
§3-2-2 磁光Kerr效應……………………………………….…………………42
§3-3 材料與結構分析測量……………………………………………………….43
§3-3-1 高解析穿透式電子顯微鏡…………………………………………….43
§3-3-2 電子能量損失譜儀…………………………………………………….43
§3-3-3 能量散佈X光光譜儀……..………………………...…………………44
§3-4 樣品製作…………………………………………………...………………..44
§3-4-1 高真空磁控濺鍍系統………………………………...………………..44
§3-4-2自旋依賴穿隧接面之成長…………………………...…………………47
-金屬鋁氧化後之傳輸特性………………………………………………….48
-電漿氧化時間對自旋依賴穿隧的影響…………………………...………..52
第四章 穿隧磁電阻之研究………………………………………………………....59
§4-1自旋依賴穿隧接面中混合電極層對磁電阻的影響…….....……………….59
§4-1-1 實驗結果與分析…………………………………………………….…59
§4-1-2 電子自旋極化與自旋翻轉效應……………………………………….66
§4-1-3 鐵磁中間層對穿隧磁電阻的影響…………………………………….70
§4-2 層間擴散對穿隧磁電阻的效應…………………………….………………74
§4-2-1 實驗結果與分析………………………………………...……………..75
§4-2-2 討論………………………………………………………………….…83
§4-3 穿隧磁電阻之角度相依性………………………………………….………87
§4-3-1 實驗結果與分析…………………………………………………….…88
§4-3-2 討論………………………………………………………..…………..95
第五章 交換偏耦合之研究…………………………………………………………98
§5-1 熱驅動層間交換偏耦合系統……………………………………………….98
§5-1-1 RKKY層間耦合的基本概念…………………………….…………….99
§5-1-2 實驗結果與分析……………………………………………………...100
§5-1-3 RKKY耦合與磁偶極矩-磁偶極矩耦合效應…………….…………..110
§5-2 交換偏耦合及層間交換偏耦合系統之磁化遲緩效應………...…………113
§5-2-1 實驗結果與分析…………………………………………..………….114
§5-2-2 磁化遲緩模型………………………………………………………...123
第六章 結論………………………………………………………………………..129
參考文獻……………………………………………………………………………132

[1] Gary A. Prinz, Science 282, 1660 (1998).
[2] T. R. McGuire and R. I. Potter, IEEE trans. Magn. 11, 1018 (1975).
[3] H. Asano, J. Hayakawa, and M. Matsui, Phys. Rev. B 57, 1052 (1998).
[4] S. Y. Yang, W. L. Kuang, C. H. Ho, W. S. Tse, M. —T. Lin, S. F. Lee, Y. Liou, and Y. D. Yao, J. Magn. Magn. Mater. 226 ~ 230, 703 (2000).
[5] B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994).
[6] S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).
[7] J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
[8] R. C. Sousa, J. J. Sun, V. Soares, P. P. Freitas, A. Kling, M. F. da Silva, and J. C. Soares, Appl. Phys. Lett. 73, 3288 (1998).
[9] Roy Edwin Scheuerlein et al., U.S. Patent: 6097625 (2000).
[10] J. M. Daughton, J. Appl. Phys. 81 3758 (1997).
[11] J. Gadbois, J. —G. Zhu, W. Vavra, and A. Hurst, IEEE trans. Magn. 33, 3301 (1997).
[12] Ching Tsang, Tsann Lin, Scott MacDonald, Mustafa Pinarbasi, Neil Robertson, Hugo Santini, Mary Doerner, Tim Reith, Lang Vo, Tom Diola, and Patrick Arnett, IEEE trans. Magn. 33, 2866 (1997).
[13] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
[14] E. Y. Chen, S. Tehrani, T. Zhu, M. Durlam, and H. Goronkin, J. Appl. Phys. 81, 3992 (1997).
[15] H. Asada, K. Matsuyama, and K. Taniguchi, J. Appl. Phys. 79, 6646 (1996).
[16] John C. Mallinson, Magneto-Resistive Heads fundamentals and applications, (Academia Press).
[17] Youfeng Zheng and Jian-Gang Zhu, IEEE trans. Magn. 33, 3286 (1997).
[18] B. A. Everitt, A. V. Pohm, and J. M. Daughton, J. Appl. Phys. 81, 4020 (1997).
[19] D. J. Monsma, R. Vlutters, T. Shimatsu, E. G. Keim, R. H. Mollema, and J. C. Lodder, IEEE trans. Magn. 33, 3495 (1997).
[20] M. Julliere, Phys. Lett. 54A, 225 (1975).
[21] P. M. Tedrow and R. Meservey, Phys. Rev. Lett. 26, 192 (1971).
[22] R. Meservey and P. M. Tedrow, Physics Report 238, 173 (1994).
[23] P. M. Tedrow and R. Meservey, Solid State Communication 16, 71 (1975).
[24] R. Meservey, P. M. Tedrow and, V. R. Kalvey, Solid State Communication 36, 969 (1980).
[25] P. M. Tedrow and R. Meservey, Phys. Rev. B 7, 318 (1973).
[26] S. Maekawa and U. Gäfvert, IEEE trans. Magn. 18 707 (1982).
[27] Chih-Huang Lai, Lien-Chang Wong, Hua-Ching Tong, Bill Crue, and Zhupei Shi, J. Magn. Magn. Mater. 198, 170 (1999).
[28] Manish Sharma, Janice H. Nickel, Thomas C. Anthony, and Shan X. Wang, Appl. Phys. Lett. 77, 2219 (2000).
[29] Zisen Li, Cornelis de Groot, and Jagadeesh H. Moodera, Appl. Phys. Lett. 77, 3630 (2000).
[30] S. Sankar, B. Dieny, and A. E. Berkowitz, J. Appl. Phys. 81, 5512 (1997).
[31] C. L. Platt, B. Dieny, and A. E. Berkowitz, J. Appl. Phys. 81 5523 (1997).
[32] Jose Maria De Teresa, Agnès Barthélémy, Albert Fert, Jean Pierre Contour, Francois Montaigne, and Pierre Seneor, Science 286, 507 (1999).
[33] W. J. Gallagher, S. S. P. Parkin, Yu Lu, X. P. Bian, A. Marley, K. P. Shaw, R. A. Altman, S. A. Rishton, C. Jahnes, T. M. Shaw, and Gang Xiao, J. Appl. Phys. 81, 3741 (1997).
[34] E. Yu. Tsymbal and D. G. Pettifor, J. Appl. Phys. 85, 5801 (1999).
[35] Jagadeesh S. Moodera, Janusz Nowak, Lisa R. kinder, Paul M. Tedrow, René J. M. van de Veerdonk, Bart A. Smits, Maarten van Kampen, Henk J. M. Swagten, and Wim J. M. de Jonge, Phys. Rev. Lett. 83, 3029 (1999).
[36] B. D. Schrag, A. Anguelouch, S. Ingvarsson, Gang Xiao, Yu Lu, P. L. Trouilloud, A. Gupta, R. A. Wanner, W. J. Gallagher, P. M. Rice, and S. S. P. Parkin, Appl. Phys. Lett. 77, 2373 (2000).
[37] Yi-Hong Huang, Jen-Hwa Hsu, J. W. Chen, and Ching-Ray Chang, Appl. Phys. Lett. 72, 2171 (1998).
[38] Yi-Hong Huang, Ph.D thesis, Department of Physics, National Taiwan University (1998).
[39] G. J. Strijkers, H. J. M. Swagten, B. Rulkens, R. H. J. N. Bitter, W. J. M. de Jonge, P. J. H. Bloemen, and K. M. Schep, J. Appl. Phys. 84, 2749 (1998).
[40] S. Honda, T. Okada, M. Nawate, and M. Tokumoto, Phys. Rev. B 56, 14566 (1997).
[41] Z. G. Wang, L. N. He, D. J. Mapps, Y. Nakamura, W. W. Clegg, and D. T. Wilton, IEEE trans. Magn. 33 3304 (1997).
[42] Zhi G. Wang, Desmond J. Mapps, Lian N. He, Warwick C. Clegg, David T. Wilton P. Robinson and Yoshihisa Nakamura, IEEE trans. Magn. 33, 4498 (1997).
[43] J. J. Sun, V. Soares, and P. P. Freitas, Appl. Phys. Lett. 74, 448 (1999).
[44] P. K. Wong, J. E. Evetts, and M. G. Blamire, J. Appl. Phys. 83, 6697 (1998).
[45] Dian Song, Janusz Nowak, and Mark Covington, J. Appl. Phys. 87, 5197 (2000).
[46] Mark Tondra, James M. Daughton, Dexin Wang, Russel S. Beech, Anita Fink, and John A. Taylor, J. Appl. Phys. 83, 6688 (1998).
[47] Katsuhiko Suzuki and P. M. Tedrow, Phys. Rev. B 58, 11597 (1998).
[48] J. M. D. Coey, A. E. Berkowitz, Ll Balcells, F. F. Putris, and F. T. Parker, Appl. Phys. Lett. 72, 734 (1998).
[49] J. S. Moodera and D. M. Mootoo, J. Appl. Phys. 76, 6101 (1994).
[50] X. W. Li, Yu Lu, G. Q. Gong, Gang Xiao, A. Gupta, P. Lecoeur, J. Z. Sun, Y. Y. Wang, and V. P. Dravid, J. Appl. Phys. 81, 5509 (1997).
[51] M. Ziese, Phys. Rev. B 60, R738 (1999).
[52] Takeshi Obata, Takashi Manako, Yuichi Shimakawa, and Yoshimi Kubo, Appl. Phys. Lett. 74, 290 (1999).
[53] Moon Ho Jo, N. D. Mathur, N. K. Todd, and M. G. Blamire, Phys. Rev. B 61, R14905 (2000).
[54] D. C. Worledge and T. H. Geballe, Phys. Rev. Lett. 85, 5182 (2000).
[55] A. S. Edelstein, R. H. Kodama, M. Moller, V. Browning, P. Lubitz, S. F. Cheng, and H. Sieber, Appl. Phys. Lett. 74 3872 (1999).
[56] N. J. Gökemeijer, T. Ambrose, C. L. Chen, N. Wang, and K. K. Fung, J. Appl. Phys. 81, 4999 (1997).
[57] Minn-Tsong Lin, C. H. Ho, Ching-Ray Chang, and Y. D. Yao, Phys. Rev. B 63, 100404(R) (2001).
[58] A. B. Pippard, Magnetoresistance in metals, (Cambridge, New York, 1989).
[59] Kai Liu, C. L. Chien, and P. C. Searson, Phys. Rev. B 58, R14681 (1998).
[60] H. Beckmann, T. Fulmer, D. Garrett, M. Hossain, and G. Bergmann, Phys. Rev. B 59, 7724 (1999).
[61] C. Y. Wu, Pd.D thesis, Department of Physics, National Taiwan University (1996).
[62] Y. D. Yao, C. H. Ho, Y. Liou, S. F. Lee, I. Klik, and C. K. Lo, Chinese J. Phys. 36, 463 (1998).
[63] 翟宏如, 物理學進展季刊, 十七卷二期,159 (中國物理學會1997).
[64] J. M. George, L. G. Pereira, A. Barthélémy, F. Petroff, L. Steren, J. L. Duvail, A. Fert, R. Loloee, P. Holody, and P. A. Schroeder, Phys. Rev. Lett. 72, 408 (1994).
[65] J. —P. Renard, P. Bruno, R. Mégy, B. Bartenlian, P. Beauvillain, C. Chappert, C. Dupas, E. Kolb, M. Mulloy, J. Prieur, P. Veillet, and E. Vélu, J. Appl. Phys. 79, 5270 (1996).
[66] J. Barnaś, J. Magn. Magn. Mater. 131, L14 (1994).
[67] C. H. Ho, C. K. Lo, Y. D. Yao, S. F. Lee, I. Klik, M. —T. Lin, Y. Liou, D. Y. Chiang, and D. R. Chang, Mat. Res. Soc. Symp. Proc. 517, 73 (1998).
[68] S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev, Lett. 66, 2152 (1991).
[69] J. Szucs, T. O’Brien, D. K. Lottis, S. Gangopadhyay, S. Mao, and E. Murdock, J. Appl. Phys. 81, 4014 (1997).
[70] C. Prados, D. V. Dimitrov, C. Y. Ni, A. Hernando, and G. C. Hadijpanayis, Phys. Rev. B 56, 14076 (1997).
[71] B. Dieny, V. S. Speriosu, S. Metia, S. S. P. Parkin, B. A. Gurney, P. Baumgart, and D. R. Wilhoit, J. Appl. Phys. 69, 4774 (1991).
[72] C. K. Lo, C. H. Ho, I. Klik, Y. D. Yao, S. F. Lee, H. H. Huang, Y. C. Chen, C. Y. Wu, D. Y. Chiang, C. A. Chang, M. —T. Lin, and D. R. Huang, Mat. Res. Soc. Symp. Proc. 517, 67 (1998).
[73] J. R. Roger, A. C. Boccara, and T. Valet, Appl. Phys. Lett. 71, 542 (1997).
[74] J. Barnaś and G. Palasantzas, J. Appl. Phys. 82, 3950 (1997).
[75] Chia-Hua Ho, Master thesis, Department of Physics, Fu-Jen University (1997).
[76] L. Sheng and D. Y. Xing, Modern Phys. Lett. B 21, 1365 (1993).
[77] Jagadeesh S. Moodera, and George Mathon, J. Magn. Magn. Mater. 200, 248 (1999).
[78] W. F. Brinkman, R. C. Dynes, and J. M. Rowell, J. Appl. Phys. 41, 1915 (1970).
[79] J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989).
[80] D. Craik, Magnetism, principles and applications, (Wiley, New York, 1995).
[81] J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, R. Lyonnet, F. Montaigne, P. Seneor, and A. Vaurès, Phys. Rev. Lett. 82, 4288 (1999).
[82] Jagadeesh S. Moodera and Lisa R. Kinder, J. Appl. Phys. 79, 4724 (1996).
[83] J. G. Simmons, J. Appl. Phys. 34, 2581 (1963).
[84] Manish Sharma, Shan X. Wang, and Janice H. Nickel, Phys. Rev. Lett. 82, 616 (1999).
[85] H. Boeve, E. Girgis, J. Schelten, J. De Boeck, and G. Borghs, Appl. Phys. Lett. 76, 1048 (2000).
[86] F. Montaigne, J. Nassar, A. Vaurès, F. Nguyen Van Dau, F. Petroff, A. Schuhl and A. Fert, Appl. Phys. Lett. 73, 2829 (1998).
[87] S. T. Chui, Phys. Rev. B 55, 5600 (1997).
[88] B. Doudin, G. Redmond, S. E. Gilbert, and J.-Ph. Ansermet, Phys. Rev. Lett. 79, 933 (1997).
[89] Sõshin Chikazumi, Physics of magnetism, (Wiley, New York 1964).
[90] D. G. Hwang, C. M. Park, and S. S. Lee, J. Magn. Magn. Mater. 186, 265 (1998).
[91] G. Choe and S. Gupta, Appl. Phys. Lett. 70, 1766 (1997).
[92] J. Nogués and Ivan K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
[93] X. W. Wu, T. Ambrose, and C. L. Chien, Appl. Phys. Lett. 72, 2176 (1998).
[94] Hiroko Uyama, Yoshichika Otani, Kazuaki Fukamichi, Osamu Kitakami, Yutaka Shimada, and Jun-ichi. Echigoya, Appl. Phys. Lett. 71, 1258 (1997).
[95] J. Nogués, T. J. Moran, D. Lederman, Ivan K. Schuller, and K. V. Rao, Phys. Rev. B 59, 6984 (1999).
[96] B. Raquet, R. Mamy, J. C. Ousset, N. Nègre, M. Goiran, C. Guerret-Piécourt, J. Magn. Magn. Mater. 184, 41 (1998).
[97] C. Leighton, J. Nogués, Harry Suhl, and Ivan K. Schuller, Phys. Rev. B 60, 12837 (1999).
[98] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
[99] J. F. Gregg, W. Allen, K. Ounadjela, M. Viret, M. Hehn, S. M. Thompson, and J. M. D. Coey, Phys. Rev. Lett. 77, 1580 (1996).
[100] Salah A. Makhlouf, F. T. Parker, F. E. Spada, J. Appl. Phys. 81, 5561 (1997).
[101] A. P. Malozemoff, Phys. Rev. B 35, 3679 (1987).
[102] De-Hua Han, Jian-Gang Zhu, Jack H. Judy, and John M. Sivertsen, J. Appl. Phys. 81, 340 (1997).
[103] D. G. Hwang, S. S. Lee, and C. M. Park, Appl. Phys. Lett. 72, 2162 (1998).
[104] R. J. M. van de Veerdonk, J. Nowak, R. Meservey, J. S. Moodera, and W. J. M. de Jonge, Appl. Phys. Lett. 71, 2839 (1997).
[105] J. S. Moodera, L. R. Kinder, J. Nowak, P. LeClair, and R. Meservey, Appl. Phys. Lett. 69, 708 (1996).
[106] K. Matsuda, N. Watari, A. Kamijo, and H. Tsuge, Appl. Phys. Lett. 77, 3060 (2000).
[107] Ulrich Weiss, Encyclopedia of Physical Science and Technology 16, 211 (1998).
[108] 楊鴻昌,物理會刊,十一卷五期,454 (1989).
[109] 陳立俊,科儀新知,十九卷二期,105 (1997).
[110] E. H. Sondheimer, Adv. Phys. 1, 1 (1952).
[111] T. S. Jayadevaiah and Robert E. Kirby, Appl. Phys. Lett. 15, 150 (1969).
[112] A. F. Mayadas, J. Appl. Phys. 39, 4241 (1968).
[113] Andrew T. A. Wee, Kyusik Sin, and Shan X. Wang, Appl. Phys. Lett. 74, 2528 (1999).
[114] J. H. Greiner, J. Appl. Phys. 42, 5151 (1971).
[115] C. H. Ho, M. —T. Lin, Y. D. Yao, S. F. Lee, Y. Liou, F. R. Chen, J. J. Kai, and C. C. Liao, J. Magn. Soc. Japan 25, 210 (2001).
[116] C. H. Ho, Minn-Tsong. Lin, Y. D. Yao, S. F. Lee, C. C. Liao, F. R. Chen, and J. J. Kai, J. Appl. Phys. 90, 6222 (2001).
[117] P. LeClair, H. J. M. Swagten, J. T. Kohlhepp, R. J. M. van de Veerdonk, and W. J. M. de Jonge, Phys. Rev. Lett. 84, 2933 (2000).
[118] J. J. Sun and P. P. Freitas, J. Appl. Phys. 85, 5264 (1999).
[119] J. S. Moodera, R. Meservey, and X. Hao, Phys. Rev. Lett. 70, 853 (1993).
[120] P. LeClair, J. S. Moodera, and R. Meservey, J. Appl. Phys. 76, 6546 (1994).
[121] Masashige Sato and Kazuo Kobayashi, IEEE Trans. Magn. 33, 3553 (1997).
[122] C. C. Liao, Master thesis, Department of Engineering and System Science, National Tsing-Hua University (2001).
[123] David J. Smith, M. R. McCartney, C. L. Platt, and A. E. Berkowitz, J. Appl. Phys. 83, 5154 (1998).
[124] Januse Nowak, Dian Song, and Ed Murdock, J. Appl. Phys. 87, 5203 (2000).
[125] C. Leighton, J. Nogués, B. J. Jönsson-Åkerman, and Ivan K. Schuller, Phys. Rev. Lett. 84, 3466 (2000).
[126] Shashi K. Upadhyay, Richard N. Louie, and R. A. Buhrman, Appl. Phys. Lett. 74, 3881 (1999).
[127] Jagadeesh S. Moodera, Elizabeth F. Gallagher, Keziah Robinson, and Januse Nowak, Appl. Phys. Lett. 70, 3050 (1997).
[128] B. Nadgorny, R. J. Soulen, Jr., M. S. Osofsky, I. I. Mazin, G. Laprad, R. J. M. van de Veerdonk, A. A. Smits, S. F. Cheng, E. F. Skelton, and S. B. Qadri, Phys. Rev. B 61, R3788 (2000).
[129] Yu Lu, R. A. Altman, A. Marley, S. A. Rishton, P. L. Trouilloud, Gang Xiao, W. J. Gallagher, and S. S. P. Parkin, Appl. Phys. Lett. 70, 2610 (1997).
[130] Feng Liu, M. R. Press, S. N. Khanna, and P. Jena, Phys. Rev. B 39, 6914 (1989).
[131] R. J. Soulen, Jr., M. S. Osofsky, B. Nadgomy, T. Ambrose, P. Broussard, J. Byers, C. T. Tanaka, J. Nowack, J. S. Moodera, G. Laprade, A. Barry, and M. D. Coey, J. Appl. Phys. 85, 4589 (1999).
[132] R. Jansen and J. S. Moodera, J. Appl. Phys. 83, 6682 (1998).
[133] Sumusu Soeya, Shin Nakamura, Takao Imagawa, and Shinji Narishige, J. Appl. Phys. 77, 5838 (1995).
[134] W. Opts, H. J. Verhagen, W. J. M. de Jonge, and R. Coehoorn, Appl. Phys. Lett. 73, 2363 (1998).
[135] X. W. Li, A. Gupta, Gang Xiao, W. Qian, and V. P. Dravid, Appl. Phys. Lett. 73, 3282 (1998).
[136] R. Jansen and J. S. Moodera, Appl. Phys. Lett. 75, 400 (1999).
[137] K. —S. Moon, R. E. Fontana, Jr., and S. S. P. Parkin, Appl. Phys. Lett. 74, 3690 (1999).
[138] Minn-Tsong Lin, C. H. Ho, Y. D. Yao, C. C. Liao, F. R. Chen, and J. J. Kai, J. Appl. Phys. (accepted).
[139] C. H. Ho, Y. D. Yao, F. R. Chen, J. J. Kai, C. C. Liao, M. —T. Lin, J. Magn. Magn. Mater. (in-press).
[140] A. Azevedo, C. Chesman, S. M. Rezende, F. M. de Aguiar, X. Bian, and S. S. P. Parkin, Phys. Rev. Lett. 76, 4837 (1996).
[141] Mark Durlam et al., US patent: 6153443, (2000).
[142] Xiangdong Zhang, Lie-Ming Li, Yiehong Zhan, Bo-Zang Li, and Fu-Cho Pu, J. Appl. Phys. 83, 930 (1998).
[143] Mahesh G. Samant, Jan Lüning, Joachim Stöhr, and Stuart S. P. Parkin, Appl. Phys. Lett. 76, 3097 (2000).
[144] S. S. P. Prakin, K. —S. Moon, K. E. Pettit, David J. Smith, R. E. Dunin- Borkowski, and M. R. McCartney, Appl. Phys. Lett. 75, 543 (1999).
[145] M. Sato, H. Kikuchi, and K. Kobayashi, J. Appl. Phys. 83, 6691 (1998).
[146] J. Schmalhorst, H. Brückl, G. Reiss, M. Vieth, G. Gieres, and J. Wecker, J. Appl. Phys. 87, 5191 (2000).
[147] R. C. Sousa, J. J. Sun, V. Soares, P. P. Freitas, A. Kling, M. F. da Silva, and J. C. Soares, J. Appl. Phys. 85, 5258 (1999).
[148] W. D. Kingery, J. Francl, R. L. Coble, and T. Vasilos, J. Am. Ceram. Soc. 37, 109 (1954).
[149] R. T. Huang, F. R. Chen, J.J. Kai, I.F. Tsu, S. Mao and W. Kai, J. Appl. Phys. (2001) (to be published).
[150] Dong-Soo Yoon, Hong Koo Baik, Sung-Man Lee, and Sang-In Lee, J. Appl. Phys. 86, 2544 (1999).
[151] D. L. Peng, K. Sumiyama, T. Hihara, S. Yamamuro, and T. J. Konmo, Phys. Rev. B 61, 3103 (2000).
[152] David J. Smith, M. R. McCartney, C. L. Platt and A. E. Berkowitz, J. Appl. Phys. 83, 5154 (1998).
[153] C. H. Ho, Minn-Tsong Lin, and Y. D. Yao, Appl. Phys. Lett. (unpublished).
[154] Samnel W. Yuan and H. Neal Bertram, J. Appl. Phys. 72, 1033 (1992).
[155] Minn-Tsong Lin, Ph.D thesis, Department of Physics, Martin-Luther University Halle-Wittenberg (1996).
[156] Chien-Cheng Kuo, Ph.D thesis, Department of Physics, National Taiwan University (2000).
[157] P. F. Carcia, J. Appl. Phys. 63, 5066 (1988).
[158] J. F. Gregg, W. Allen, K. Ounadjela, M. Viret, M. Hehn, S. M. Thompson, and J. M. D. Coey, Phys. Rev. Lett. 77, 1580 (1996).
[159] R. Kergoat, M. Labrune, J. Miltat, T. Valet, J. C. Jacquet, IEEE trans. Magn. 29, 2533 (1993).
[160] S. Y. Hsu, A. Barthélémy, P. Holody, R. Loloee, P. A. Schroeder, and A. Fert, Phys. Rev. Lett. 78, 2652 (1997).
[161] Charles Kittel, Introduction to Solid State Physics, 7th edition, (John Wiley, New York, 1996).
[162] D. G. Dempsey, Leonard Ljeinman, and Ed Caruthers, Phys. Rev. B 14, 279 (1976).
[163] D. G. Dempsey, Leonard, and Ed Caruthers, Phys. Rev. B 12, 2932 (1975).
[164] D. G. Dempsey, Leonard, and Ed Caruthers, Phys. Rev. B 13, 1489 (1976).
[165] D. G. Dempsey, W. R. Gries, and Leonard Kleinman, Phys. Rev. B 18, 1270 (1978).
[166] J. M. George, L. G. Pereira, A. Barthélémy, F. Petroff, L. Steren, J. L. Duvail, A. Fert, R. Loloee, P. Holody, and P. A. Schroeder, Phys. Rev. Lett. 72, 408 (1994).
[167] D. H. Han, J. G. Zhu, and J. H. Judy, J. Appl. Phys. 81, 4996 (1997).
[168] D. C. Parks, P. J. Chen, W. F. Egelhoff, Jr., and Romel D. Gomez, J. Appl. Phys. 87, 3023 (2000).
[169] Minn-Tsong Lin, C. H. Ho, Ching-Ray Chang, Y. D. Yao, J. Appl. Phys. 89, 7546 (2001).
[170] P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).
[171] S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991).
[172] P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).
[173] P. Bruno and C. Chappert, Phys. Rev. B 46, 261 (1992).
[174] A. P. Malozemoff, Phys. Rev. B 37, 7673 (1988).
[175] N. C. Koon, Phys. Rev. Lett. 78, 4865 (1997).
[176] C. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987).
[177] J. Nogués, D. Lederman, T. J. Moran, and Ivan K. Schuller, Phys. Rev. Lett. 76, 4624 (1996).
[178] J. Nogués, T. J. Moran, D. Lederman, Ivan K. Schuller, and K. V. Rao, Phys. Rev. B 59, 6984 (1999).
[179] N. J. Gökemeijer, T. Ambrose, and C. L. Chien, Phys. Rev. Lett. 79, 4270 (1997).
[180] L. Thomas, A. J. Kellock, and S. S. P. Parkin, J. Appl. Phys. 87, 5061 (2000).
[181] T. Mewes, B. F. P. Roos, S. O. Demokritov, and B. Hillebrands, J. Appl. Phys. 87, 5064 (2000).
[182] J. Nogués, D. Lederman, T. J. Moran, and Ivan K. Schuller, K. V. Rao, Appl. Phys. Lett. 68, 3186 (1996).
[183] S. G. E. te Velthuis, A. Berger, G. P. Felcher, B. K. Hill, and E. Dan Dahlberg, J. Appl. Phys. 87, 5046 (2000).
[184] V. I. Nikitenko, V. S. Gornakov, A. J. Shapiro, R. D. Shull, Kai Liu, S. M. Zhou and C. L. Chien, Phys. Rev. Lett. 84, 765 (2000).
[185] Masahiko Naoe, Yasuyoshi Hiyamoto, and Shigeki Nakagawa, J. Appl. Phys. 75, 6525 (1994).
[186] D. Altbir, M. Kiwi, R. Ramirez, and I. K. Schuller, J. Magn. Magn. Mater. 149, L246 (1995).
[187] D. Altbir, J. d. A. e. Castro, and P. Vargas, Phys. Rev. B 54, R6823 (1996).
[188] J. S. Yang, J. Lee, and C. -R. Chang, IEEE Trans. Magn. 34, 2469 (1998).
[189] S. Demokritov, E. Tsymbal, P. Grünberg, W. Zinn, and Ivan K. Schuller, Phys. Rev. B 49, 720 (1993).
[190] Ultrathin Magnetic Structures, edited by B. Heinrich and J. A. C. Bland ~Springer-Verlag, Berlin, 1994, Vol. II.
[191] J. R. Cullen and K. B. Hathaway, Phys. Rev. B 47,14 998 (1993).
[192] Z. Q. Qiu, J. E. Mattson, C. H. Sowers, U. Welp, S. D. Bader, H. Tang, and J. C. Walker, Phys. Rev. B 45, 2252 (1992).
[193] D. M. Edwards, J. Mathon, R. B. Muniz, and M. S. Phan, J. Phys.: Condens. Matter 3, 4941 (1991).
[194] E. Beaurepaive, J. —C. Merle, A. Daunois, and J. —Y. Bogot, Phys. Rev. Lett. 76, 4250 (1996).
[195] Ganping Ju and A. V. Nurmikko, Phys. Rev. Lett. 82, 3705 (1999).
[196] B. D. Cullity, Introduction to magnetic materials, (Addison-Wesley, 1972).
[197] P. A. A. van der Heijden, T. F. M. M. Maas, J. C. S. Kools, F. Roozeboom, P. J. van der Zaag, and W. J. M. De Jonge, J. Appl. Phys. 83, 7207 (1998).
[198] C. H. Marrows, R. Loloee, and B. J. Hickey, J. Magn. Magn. Mater. 184, 137 (1998).
[199] Yuan-Jen Lee, Ching-Ray Chang, Tzay-Ming Hong, C. H. Ho, and Minn-Tsong Lin, J. Magn. Magn. Mater. (in-press).
[200] Y. D. Yao, Y. Y. Chen, M. F. Tai, D. H. Wang, and M. H. Lin, Mater. Scien. Engin. A217~218, 281 (1996).
[201] Y. D. Yao, Y. Y. Chen, C. M. Hsu, H. M. Lin, C. Y. Tung, M. F. Tai, D. H. Wang, K. T. Wu, and C. T. Suo, Nanostructureed Mater. 6, 933 (1995).
[202] P. A. A. van der Heijden, T. F. M. M. Maas, W. J. M. De Jonge, J. C. S. Kools, F. Roozeboom, and P. J. van der Zaag, Appl. Phys. Lett. 72, 492 (1998).
[203] Vladimir L. Safonov and H. Neal Bertram, Phys. Rev. B 63, 944191 (2001).
[204] E. Nakashio, J. Sugawara, S. Onoe, and S. Kumagai, J. Appl. Phys. 89, 7356 (2001).
[205] H. Jaffrès, D. Lacour, F. Nguyen Van Dau, J. Briatico, F. Petroff, and A. Vaurès, Phys. Rev B 64, 644271 (2001).
[206] M. J. Plisch, J. L. Chang, J. Silcox, and R. A. Buhrman, Appl. Phys. Lett. 79, 391 (2001).
[207] J. J. Sun, K. Shimazawa, K. Sato, S. Saruki, T. Kagami, O. Redon, S. Araki, H. Morita, and M. Matsuzaki, Appl. Phys. Lett. 76, 2424 (2000).
[208] D. S. Geoghegan, P. G. McCormick, R. Street, J. Magn. Magn. Mater. 177-181, 937 (1998).
[209] J. J. Sun, R. C. Sousa, T. T. P. Galvão, V. Soares, T. S. Plaskett, and P. P. Freitas, J. Appl. Phys. 83, 6694 (1998).
[210] S. Cardoso, P. P. Freitas, C. de Jesus, P. Wei, and J. C. Soares, Appl. Phys. Lett. 76, 610 (2000).
[211] Haiwen Xi, Mark H. Kryder, and Robert M. White, Appl. Phys. Lett. 74, 2687 (1999).
[212] T, Ambrose, K. Leifer, K. J. Hemker, C. L. Chien, J. Appl. Phys. 81, 5007 (1997).
[213] J. Fujikata, T. Ishi, S. Mori, K. Matsuda, K. Mori, H. Yokota, K. Hayashi, M. Nakada, A. Kamijo, and K. Ohashi, J. Appl. Phys. 89, 7558 (2001).
[214] P. LeClair, J. T. Kohlhepp, H. J. M. Swagten, and W. J. M. de Jonge, Phys. Rev. Lett. 86, 1066 (2001).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔