(3.238.186.43) 您好!臺灣時間:2021/02/28 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:杭大任
研究生(外文):Da-Ren Hang
論文名稱:氮化物半導體之光學與電學特性研究
論文名稱(外文):Optical and electrical properties of nitride semiconductors
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:116
中文關鍵詞:三五族半導體氮化物光學與電學性質氮化鋁鎵/氮化鎵氮砷化銦/砷化銦鎵異質結構磁傳輸光調制光譜
外文關鍵詞:III-V semiconductornitrideoptical and electrical propertiesAlGaN/GaNInAsN/InGaAsheterostructureShubnikov-de Haasmodulation spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:4
摘 要
我們研究低維度三五族氮化物半導體異質結構之光學與電學性質. 我們以光激螢光, 光調制光譜及磁傳輸等方法研究氮化鋁鎵/氮化鎵異質結構和氮砷化銦/砷化銦鎵單量子井的物理性質. 本論文分為以下五個部分:
(1)以深能階復合放光研究氮化鋁鎵/氮化鎵之能帶差異分布比值
我們以光調制光譜和光激螢光研究氮化鋁鎵合金的光學性質之鋁成分相關性. 在氮化鎵中常見的黃色螢光也出現在氮化鋁鎵合金中. 造成黃色螢光的深能階被用做為共同的參考能階來決定氮化鋁鎵/氮化鎵異質接面的排列狀況. 再藉由能帶附近的光調制光譜, 導電帶和價帶的帶差分布估計為65比35. 我們的結果和藉由氮化鋁鎵/氮化鎵量子井之光激螢光, 線性鬆餅模型軌域法和線性附加平面波法所得到的比值很接近.
(2)氮化鋁鎵/氮化鎵異質接面處二維電子氣之等效質量
我們研究低溫下氮化鋁鎵/氮化鎵異質結構的磁傳輸性質. 藉由分析磁場下二維電子之電性震盪(即所謂的Shubnikov-de Haas, SdH震盪)隨溫度的變化函數, 電子的等效質量可以被決定. 得到的值隨磁場而增大. 此等效質量的增大現象是由非拋物線型導電帶效應造成. 將等效質量隨磁場之變化量外插至零磁場處, 再加上能帶填充效應的修正, 等效質量值估算為0.185倍的自由電子質量. 我們的結果和第一原理計算和緊束縛模型法所得到的結果一致, 並且顯示了磁場引發的非拋物線型能帶效應在傳輸量測上的重要性.
(3)以電性偵測氮化鋁鎵/氮化鎵異質結構中之微波調制下Shubnikov-de Haas震盪
我們藉由微波調制技術得到氮化鋁鎵/氮化鎵異質結構中大幅加強的SdH震盪圖樣. 我們研究了SdH震盪圖樣隨微波強度和溫度的關係. 主要的機制是載子的加熱效應. 這種技術對於研究新奇的寬能隙半導體異質結構中二維電子的傳輸性質非常的有用, 因為在此類物質系統中, 經常會遇到一般中庸的電子移動率和較重的電子等效質量(即快速衰減的SdH振幅). 此外, 相較於一般的載子調制技術, 這種方法具有保持載子濃度固定的優點, 又不需要使用高能量的雷射.
(4)調變參雜的氮化鋁鎵/氮化鎵異質結構中的子帶電子性質
我們以磁傳輸量測研究雙子帶填充下氮化鋁鎵/氮化鎵異質結構之子帶電子性質. 第二子帶的填充可由SdH震盪的多頻得到證明. 多頻調制下的SdH震盪圖樣可以藉由微波調制技術大幅加強. 我們可以用微波調制的磁傳輸量測提供直接的實驗證據顯示第二子帶的二維電子氣比起在第一子帶有更大的移動率. 各子帶的載子濃度, 費米能量和量子移動率可被決定. 我們發現隨著不參雜的空間層(spacer)的長度增加至五奈米, 第二子帶的載子分布率上升而子帶能階差下降. 此外, 對子帶電子的量子生命期研究顯示短程散射和子帶間的共振散射對調變參雜的氮化鋁鎵/氮化鎵異質結構中的二維電子氣有很重要的影響.
(5)氮砷化銦/砷化銦鎵單量子井中二維電子氣之Shubnikov-de Haas震盪
我們首度研究了氮砷化銦/砷化銦鎵單量子井中二維電子氣的SdH振盪. 氮砷化銦/砷化銦鎵單量子井的光激螢光峰值, 因為氮加入所造成的能隙彎曲效應而減少. 氮的含量可以用光激螢光峰值決定為千分之四. 由SdH振盪的分析發現電子等效質量值是0.1倍的自由電子質量. 此等效質量的增加是由於在砷化銦晶格中加入氮原子所造成. 如此大的增加量無法以簡單能帶互斥模型來解釋. 此外, 我們觀察到在臨界磁場處不隨溫度改變的磁阻. 我們的分析支持量子霍爾效應之臨界指數並非一個普適值的結果.

Abstract
We present the studies of optical and electrical properties of low-dimensional III-V nitride semiconductor heterostructures. Photoluminescence (PL), modulation spectroscopy, and magnetotransport measurements are employed to characterize the physical properties of AlGaN/GaN heterostructures and an InAsN/InGaAs single quantum well. This thesis consists of five parts described as following.
1. AlGaN/GaN band offsets determined by deep-level emission
We present studies of the compositional dependence of the optical properties of AlXGa1-XN (0 < x < 0.22) alloys by modulation spectroscopy and PL measurements. The yellow luminescence (YL), which is well known in GaN, has also been observed in AlGaN. The deep level responsible for the YL is used as a common reference level to determine the band alignment in AlGaN/GaN heterojunctions. Combining with the near-band-edge modulation spectra, the estimated ratio of conduction-to-valence band discontinuity is 65:35. Our results are close to the values obtained from PL measurements on Al0.14Ga0.86N/GaN quantum wells and those calculated by linear muffin-tin orbital method and linearized augmented plane wave method.
2. Effective mass of the two-dimensional electron gas in an Al0.2Ga0.8N/GaN heterojunction
We have performed a magnetotransport study on an AlGaN/GaN heterostructure at low temperatures. The effective-mass values have been evaluated by analyzing the exact form of the temperature-dependent Shubnikov-de Haas (SdH) oscillation function. The values obtained increase with the magnetic field. This mass enhancement is attributed to conduction-band nonparabolicity. The effective mass variation with the magnetic field was extrapolated to zero-field, together with further correction due to band filling effect, yielding an effective mass of 0.185 ± 0.005 of the free-electron mass. Our result is in excellent agreement with the results obtained by first-principle calculations and tight-binding method and suggests the significance of magnetic-field-induced nonparabolicity in transport measurements.
3. Electrically detected and microwave-modulated Shubnikov-de Haas oscillations in an Al0.4Ga0.6N/GaN heterostructure
We report the drastic enhancement pattern of SdH oscillations observed in an AlGaN/GaN heterostructure by microwave modulation. The dependence of the SdH pattern on microwave power and temperature is investigated. The underlying mechanism is attributed to the effect of carrier heating. This technique helps study the transport properties of two-dimensional electron gas (2DEG) in novel wide band-gap heterostructures, where moderate mobilities and heavier electron effective mass (rapidly damping SdH amplitudes) are frequently encountered. In addition, this method has the advantage of keeping the carrier concentration fixed and not requiring high-energy laser facilities compared with carrier-modulated SdH measurements.
4. Subband electron properties of modulation-doped AlGaN/GaN heterostructures
We present studies on subband electron properties of two-subband-occupied AlGaN/GaN heterostructures by magnetotransport measurements. The second-subband population is manifested by the multi-frequency in the SdH oscillations. The modulated patterns of SdH oscillations due to multi-frequency can be drastically enhanced by employing the microwave modulation technique. We provide direct experimental evidence that the 2DEG in the second subband has a higher mobility than that in the first subband by means of microwave-modulated magnetotransport measurements. The carrier concentrations, 2DEG Fermi energy and quantum mobilities for each subband were determined. It was found that the second subband population ratio increases with spacer thickness up to 5 nm, while the subband separation decreases. Furthermore, studies on the quantum lifetimes of subband electrons suggest that the short-range scattering and interband resonant scattering have significant influence on the properties of the 2DEG in the modulation-doped Al0.22Ga0.78N/GaN heterostructures.
5. Shubnikov—de Haas oscillations of two-dimensional electron gas in an InAsN/InGaAs single quantum well
We present the first investigation of SdH oscillations of 2DEG formed in an InAsN/InGaAs single quantum well (QW). The PL peak energy of the InAsN/InGaAs QW decreases in consequence of the bowing effect due to the incorporation of nitrogen atoms. The nitrogen content can be estimated by the PL peak to be 0.4 %. From the analysis of SdH oscillations, the effective mass is determined to be 0.1 ± 0.01 m0. The enhancement of the effective mass is mainly due to the incorporation of the nitrogen atoms in the InAs lattice. The large increase of the effective mass cannot be explained by the simple band anticrossing model. In addition, a temperature-independent magnetoresistivity at a critical magnetic field is observed. Our analysis supports the fact that the value of the critical exponent in quantum Hall effect is not universal.

Contents
Abstract (Chinese) ……………………………………i
Abstract (English) ………………………………………….iii
Acknowledgements ……………………………………………………vi
Contents ……………………………………………………………….vii
List of figures ………………………………………………………ix
List of tables ………………………………………………………..xv
1. Introduction
1.1 Overview ……………………………………………………….1
1.2 Gallium nitride-related alloys …………………………5
1.3 III-N-V compound-related physics models ……………6
1.4 References ……………………………………………………12
2. AlXGa1-XN/GaN band offsets determined by deep-level emission
2.1 Introduction ………………………………………………..13
2.2 Experiments ……………………………………………….15
2.3 Results and Discussions …………………………………..18
2.4 Summary ……………………………………………………. 26
2.5 References ……………………………………………………27
3. Effective mass of the two-dimensional electron gas in an Al0.2Ga0.8N/GaN heterojunction
3.1 Introduction ………………………………………………….30
3.2 Experiments ………………………………………………….31
3.3 Results and Discussions ………………………………. 34
3.4 Summary ……………………………………………………… 44
3.5 References …………………………………………………...45
4. Electrically detected and microwave-modulated Shubnikov-de Haas oscillations in an Al0.4Ga0.6N/GaN heterostructure
4.1 Introduction ………………………………………………… 47
4.2 Experiments …………………………………………………49
4.3 Results and Discussions ………………………………….51
4.4 Summary ……………………………………………………….59
4.5 References …………………………………………………..60
5. Subband electron properties of modulation-doped Al0.22Ga0.78N/GaN heterostructures
5.1 Introduction ………………………………………………….61
5.2 Experiments ……………………………………………………63
5.3 Results and Discussions ………………………………….65
5.4 Summary ………………………………………………………89
5.5 References …………………………………………………..90
6. Shubnikov-de Haas oscillations of two-dimensional electron gas in an InAsN/InGaAs single quantum well
6.1 Introduction …………………………………………………93
6.2 Experiments ……………………………………………………95
6.3 Results and Discussions ………………………………….98
6.4 Summary …………………………………………………..108
6.5 References ……………………………………………………109
7. Conclusions …………………………………………………112

References for chapter 1
1. G. Landwehr, A. Waag, F. Fischer, H. -J. Lugauer, and K. Schüll, Physica E 3, 158 (1998).
2. J. D. Perkins, A. Mascarenhas, Y. Zhang, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 3312 (1999).
3. W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999).
4. T. Mattila, S. -H. Wei, and A. Zunger, Phys. Rev. B 60, R11245 (1999).
5. H. M. Cheong, Y. Zhang, A. Mascarenhas, and J. F. Geisz, Phys. Rev. B 61, 13687 (2000).
6. K. M. Yu, W. Walukiewicz, W. Shan, J. W. Ager III, J. Wu, E. E. Haller, J. F. Geisz, D. J. Friedman, and J. M. Olson, Phys. Rev. B 61, R13337 (2000).
7. A. Lindsay, and E. P. O’Reilly, Solid State Commun. 112, 443 (1999).
8. C. Skiebiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, J. F. Geisz, and J. M. Olson, Appl. Phys. Lett. 76, 2409 (2000).
9. Y. Zhang, A. Mascarenhas, H. P. Xin, and C. W. Tu, Phys. Rev. B 61, 7479 (2000).
10. X. Liu, M. -E. Pistol, L. Samuelson, Phys. Rev. B 42, 7504 (1990).
References for chapter 2
1. W. Shan, J. W. Ager III, K. M. Yu, W. Walukiewicz, E. E. Haller, M. C. Martin, W. R. McKinney, and W. Yang, Appl. Phys. Lett. 85, 8505 (1999).
2. H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Hopler, T. Metzger, E. Born, G. Dollinger, A. Bergmaier, S. Karsch and H.-J. Korner, Appl. Phys. Lett. 71, 1504 (1997).
3. T. J. Ochalski, B. Gil, P. Lefebure, N. Grandjean, M. Leroux, J. Massies, S.
Nakamura, and H. Morkoç, Appl. Phys. Lett. 74, 3353 (1999).
4. S. R. Lee, A. F. Wright, M. H. Crawford, G. A. Petersen, J. Han, and R. M.
Biefeld, Appl. Phys. Lett. 74, 3344 (1999).
5. G. Steude, B. K. Meyer, A. Göldne, A. Hoffmann, F. Bertram, J. Christen, H.
Amano, and I. Akasaki, Appl. Phys. Lett. 74, 2456 (1999).
6. Z. Sitar, M. Paisley, B. Yuan, R. F. Davis, J. Ruan, J. W. Choyke, Thin Solid
Film 200, 311 (1991).
7. G. A. Martin, A. Botchkarev, A. Agarwal, A. Rockett, and H. Morkoç, Appl.
Phys. Lett. 68, 2541 (1996).
8. J. R. Waldrop and R. W. Grant, Appl. Phys. Lett. 68, 2879 (1996).
9. S.-H. Wei and A. Zunger, Appl. Phys. Lett. 69, 2719 (1996).
10. M. A. Khan, R. A. Skogman, J. M. van Hove, S. Krishnankutty, and R. M.
Kolbas, Appl. Phys. Lett. 56, 1257 (1990).
11. J. Baur, K. Maier, M. Kunzer, U. Kaufmann, and J. Schneider, Appl. Phys.
Lett. 65, 2211 (1994).
12. E. A. Albanesi, W. R. L. Lambrecht, B. E. Segall, Proc. Mater. Res. Soc. Symp. 339, 256 (1994).
13. J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).
14. S. C. Jain, M. Willander, J. Narayan and R. Van Overstraeten, J. Appl. Phys. 87, 965, (2000).
15. E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, J. A. Freitas, M. Asifkhan, D. T. Olson, J. N. Kuznia, and D. K. Wickenden, Phys. Rev. B 51, 13326 (1995).
16. T. Suski, P. Perlin, H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, M.
Bockowski, S. Porowski, and T. D. Moustakas, Appl. Phys. Lett. 67, 2188
(1995).
17. P. Perlin, T. Suski, H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, S. Porowski, P. Boguslawski, J. Bernholc, J. C. Chervin and T. D. Moustakas, Phys. Rev. Lett. 75, 296 (1995).
18. Group III Nitride Semiconductor Compounds, edited by B. Gil (Clarendon, Oxford 1998), pp. 19-69.
19. C. R. Abernathy, in GaN and Related Materials, edited by S. J. Pearton (Gordon and Breach, New York, 1997), pp.11-51.
20. E. Calleja, F. J. Sánchez, D. Basak, M. A. Sánchez-Garcia, E. Muňoz, I. Izpora, F. Calle, J. M. G. Tijero, J. L. Sánchez-Rojas, B. Beaumont, P. Lorenzini, and P. Gilbart, Phys. Rev. B 55, 4689 (1997).
21. D. M. Hofmann, D. Kavalev, G. Steude, B. K. Meyer, A. Hoffmann, L. Eckey, R. Heitz, T. Detchprohm, H. Amano, and I. Akasaki, Phys. Rev. B 52, 16702 (1995).
22. F. A. Ponce, D. P. Bour, W. Götz, and P. J. Wright, Appl. Phys. Lett. 68, 57
(1996).
23. Ch. Manz, M. Kunzer, H. Obloh, A. Ramakrishnan and O. Kaufmann. Appl. Phys. Lett. 74, 1252 (2000).
24. H. S. Kim, R. A. Mair, J. Li, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett. 76,
1252 (2000).
25. J. C. Fan, C. H. Chen and Y. F. Chen, Appl. Phys. Lett. 72, 1605 (1998).
26. D. E. Aspnes, in Handbook on Semiconductors, edited by M. Balkanski ( North-Holland, New York, 1980) , Vol. 2, p.109.
27. C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, J. Appl. Phys. 80, 400 (1997).
28. X. Yin, H. M. Chen, F. H. Pollak, Y. Cao, P. A. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Vac. Sci. Technol. B 9, 2114 (1991).
29. X. Yin, F. H. Pollak, L. Pawiowicz, T. O’Neill and M. Hafizi, Appl. Phys. Lett. 56, 1278 (1990).
30. F. H. Pollak, in Handbook on Semiconductors, edited by M. Balkanski ( North-Holland, Amsterdam, 1994) , Vol. 2, p.527.
31. H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, Phys. Rev. B 56, 6942, (1997).
32. R. C. Tu, Y. K. Su, C. F. Li, Y. S. Huang, S. T. Chou, W. H. Lan, S. C. Tu, and H. Chang, J. Appl. Phys. 83, 1664, (1998).
33. W. Krystek, F. H. Pollak, Z. C. Feng, M. Schurman, and R. A. Stall , Appl.
Phys. Lett. 72, 1353 (1998).
34. Y. T. Hou, K. L. Teo, M. F. Li, K. Uchida, H, Tokunaga, N. Akutsu and K.
Matsumoto, Appl. Phys. Lett. 76, 1033 (2000).
35. J. M. Langer and H. Heinrich, Phys. Rev. Lett. 55, 1414 (1985).
36. H. Hasegawa and H. Ohno, Jpn. J. Appl. Phys., Part 2 25, L319 (1986).
References for chapter 3
1. L. W. Wong, S. J. Cai, R. Li, K. Wang, H. W. Jiang, and M. Chen, Appl. Phys. Lett. 73, 1391 (1998).
2. W. Knap, E. Frayssinet, M. L. Sadowski, C. Skierbiszewski, D. Maude V. Falko M. Asif, and M. S. Shur, Appl. Phys. Lett. 75, 3156 (1999).
3. A. Saxler, P. Debray, R. Perrin, S. Elhamri, W. C. Mitchel, C. R. Elsass, I. P. Smorchkova, B. Heying, E. Haus, P. Fini, J. P. Ibbetson, S. Keller, P. M. Petroff, S. P. DenBaars, U. K. Mishra, and J. S. Speck, J. Appl. Phys. 87, 369 (2000).
4. A. F. Braña, C. Diaz-Paniagua, F. Batallan, J. A. Garrido, E. Muñoz, and F. Omnes, J. Appl. Phys. 88, 932 (2000).
5. W. Knap, S. Contreras, H. Alause, C. Skierbiszewski, J. Camassel, M. Dyakonov, J. L. Robert, J. Yang, Q. Chen, M. Asif Khan, M. L. Sadowski, S. Huant, F. H. Yang, M. Goiran, J. Leotin, and M. S. Shur, Appl. Phys. Lett. 70, 2123 (1997).
6. M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B 52, 8132 (1995).
7. T. Yang, S. Nakajima and S. Sukai, Jpn. J. Appl. Phys. 34, 5912 (1995).
8. E. O. Kane, J. Phys. Chem. Solids, 1, 249 (1956).
9. R. F. Wallis, J. Phys. Chem. Solids, 4, 101 (1958).
10. E. D. Palik, G. S. Picus, S. Teitler and R. F. Wallis, Phys. Rev. 122, 475 (1961).
11. E. D. Palik, S. Teitler, and R. F. Wallis, J. Appl. Phys. 32, 2132 (1961).
12. T. E. Whall, A. D. Plews, N. L. Mattey, P. J. Phillips, and U. Ekenberg, Appl. Phys. Lett. 66, 2724 (1995).
References for chapter 4
1. S. E. Schacham, E. J. Haugland, and S. A. Alterovitz, Appl. Phys. Lett. 61, 551 (1992).
2. R. A. Mena, S. E. Schacham, E. J. Haugland, S. A. Alterovitz, P. G. Young, S. B. Bibyk, and S. A. Ringel, J. Appl. Phys. 78, 6626 (1995).
3. P. Omling, B. Meyer, and P. Emanuelsson, Appl. Phys. Lett. 58, 931 (1991).
4. H. Linke, P. Omling, P. Ramvall, B. K. Meyer, M. Drechsier, C. Wetzel, R. Rudeloff, and F. Scholz, J. Appl. Phys. 73, 7533 (1993).
5. A. Brensing, M. Mazloom-Tehrani, and W. Bauhofer, Appl. Phys. Lett. 70, 3128 (1997).
6. H. Linke, B. Kowalski, P. Ramvall, P. Emanuelsson, P. Omling, K. Oettinger, M. Drechsler, and B. K. Meyer, Appl. Phys. Lett. 62, 2725 (1993).
7. J. C. Fan, Y. H. Chang, Y. F. Chen, J. F. Whang, F. F. Fang, W. J. Tsai, and C. Y. Chang, Chin. J. Phys. 35, 917 (1997).
8. H. Y. Fan, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer, (Academic Press, 1967), Vol. 3, p. 405.
9. D. R. Hang, C.-T. Liang, C. F. Huang, Y. H. Chang, Y. F. Chen, H. X. Jiang, and J. Y. Lin, Appl. Phys. Lett. 79, 66 (2001).
10. T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, G. C. Chi, Phys. Rev. B 58, 13793 (1998).
References for chapter 5
11. T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, G. C. Chi, Phys. Rev. B 58, 13793 (1998).
12. D. R. Hang, C. -T. Liang, C. F. Huang, Y. H. Chang, Y. F. Chen, H. X. Jiang, and J. Y. Lin, Appl. Phys. Lett. 79, 66 (2001).
13. J. A. Garrido, J. L. Sánchez-Rojas, A. Jiménez, E. Muñoz, F. Omnes, and P. Gibart, Appl. Phys. Lett. 75, 2407 (1999).
14. D. R. Hang, C. H. Chen, Y. F. Chen, H. X. Jiang, and J. Y. Lin , J. Appl. Phys. 90, 1887 (2001).
15. L. Hsu, and W. Walukiewicz, J. Appl. Phys. 89, 1783 (2001).
16. J. J. Harris, K. J. Lee, T. Wang, S. Sakai, Z. Bougrioua, I. Moerman, E. J. Thrush, J. B. Webb, H. Tang, T. Martin, D. K. Maude, and J.-C. Portal, Semicond. Sci. Technol. 16, 402, (2001).
17. J. P. Bergman, T. Lundstöm, B. Monemar, H. Amano, and I. Akasaki, Appl. Phys. Lett. 69, 3456 (1996).
18. S. R. Kurtz, A. A. Allerman, D. D. Koleske, and G. M. Peake, Appl. Phys. Lett. 80, 4549 (2002).
19. C. Y. Fang, C. F. Lin, E. Y. Chang, and M. S. Feng, Appl. Phys. Lett. 80, 4558 (2002).
20. Z. -F. Li, W. Lu, S. C. Shen, S. Holland, C. M. Hu, D. Heitmann, B. Shen, Y. D. Zheng, T. Someya, and Y. Arakawa, Appl. Phys. Lett. 80, 431 (2002).
21. Z. W. Zheng, B. Shen, R. Zhang, Y. S. Gui, C. P. Jiang, Z. X. Ma, G. Z. Zheng, S. L. Guo, Y. Shi, P. Han, Y. D. Zheng, T. Someya, and Y. Arakawa, Phys. Rev. B 62, R7739 (2000).
22. C. P. Jiang, S. L. Guo, Z. M. Huang, J. Yu, Y. S. Gui, G. Z. Zheng, J. H. Chu, Z. W. Zheng, B. Shen, and Y. D. Zheng, Appl. Phys. Lett. 79, 374 (2001).
23. Ikai Lo, J. K. Tsai, W. J. Yao, P. C. Ho, L.-W. Tu, T. C. Chang, S. Elhamri, W. C. Mitchel, K. Y. Hsieh, J. H. Huang, H. L. Huang, W.-C. Tsai, Phys. Rev. B 58, 13793 (1998).
24. K. Tsubaki, N. Maeda, T. Saitoh, T. Nishida, and N. Kobayashi, Physica E, 13, 1111 (2002).
25. K. Tsubaki, N. Maeda, T. Saitoh, and N. Kobayashi, Appl. Phys. Lett. 80, 3126 (2002).
26. D. R. Hang, C.-T. Liang, J.-R. Juang, Tsai-Yu Huang, W. K. Hung, Y. F. Chen, Gil-Ho Kim, Jae-Hoon Lee and Jung-Hee Lee, submitted to J. Appl. Phys.
27. L. W. Wong, S. J. Cai, R. Li, K. Wang, H. W. Jiang, and M. Chen, Appl. Phys. Lett. 73, 1391 (1998).
28. A. Saxler, P. Debray, R. Perrin, S. Elhamri, W. C. Mitchel, C. R. Elsass, I. P. Smorchkova, B. Heying, E. Haus, P. Fini, J. P. Ibbetson, S. Keller, P. M. Petroff, S. P. DenBaars, U. K. Mishra, and J. S. Speck, J. Appl. Phys. 87, 369 (2000).
29. L. K. Li, B. Turk, W. I. Wang, S. Syed, D. Simonian, and H. L. Stormer, Appl. Phys. Lett. 76, 742 (2000).
30. J. M. Redwing, M. A. Tischler, J. S. Flynn, S. Elhamri, M. Aroujja, R. S. Newrock, and W. C. Mitchel, Appl. Phys. Lett. 69, 963 (1996).
31. S. Elhamri, A. Saxler, W. C. Mitchel, C. R. Elsass, I. P. Smorchkova, B. Heying, E. Haus, P. Fini, J. P. Ibbetson, S. Keller, P. M. Petroff, S. P. DenBaars, U. K. Mishra, and J. S. Speck, J. Appl. Phys. 88, 6583 (2000).
32. T. Wang, J. Bai, S. Sakai, Y. Ohno and H. Ohno, Appl. Phys. Lett. 76, 2737 (2000).
33. J. B. Webb, H. Tang, J. A. Bardwell, and P. Coleridge, Appl. Phys. Lett. 78, 3845 (2001).
34. R. M. Kusters, F. A. Wittekamp, J. Singleton, J. A. A. J. Perenboom, G. A. C. Jones, D. A. Ritchie, J. E. F. Frost, and J.-P. André, Phys. Rev. B 46, 10207 (1992).
35. Z. Huang, R. Yu, C. Jiang, T. Lin, Z. Zhang, and J. Chu, Phys. Rev. B 65, 205312 (2002).
36. D. R. Leadley, R. J. Nicholas, J. J. Harris, and C. T. Foxon, Semicond. Sci. Technol. 4, 885 (1989).
37. P. T. Coleridge, Semicond. Sci. Technol. 5, 961 (1990).
38. D. R. Leadley, R. Fletcher, R. J. Nicholas, F. Tao, C. T. Foxon, and J. J. Harris, Phys. Rev. B 46, 12439 (1992).
39. M. E. Raikh, and T. V. Shahbazyan, Phys. Rev. B 49, 5531 (1994).
References for chapter 6
1. M. Kondow, K. Uomi, T. Kitatani, S. Watahiki, and Y. Yazawa, J. Cryst. Growth. 164, 175 (1996).
2. G. S. Kinsey, D. W. Gotthold, A. L. Holmes Jr., B. G. Streetman, and J. C. Campbell, Appl. Phys. Lett. 76, 2824 (2000).
3. K. M. Yu, W. Walukiewicz, J. Wu, J. W. Beeman, J. W. Ager III, E. E. Haller, W. Shan, H. P. Xin, and C. W. Tu, Appl. Phys. Lett. 78, 1077 (2001).
4. J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, and B. M. Keyes, J. Cryst. Growth. 195, 401 (1998).
5. M. Weyers, M. Sato, and H. Ando, Jpn. J. Appl. Phys., Part 2 31, L853 (1992).
6. I. Suemune, K. Uesugi, and W. Walukiewicz, Appl. Phys. Lett. 77, 3021 (2000).
7. K. Uesugi and N. Marooka, and I. Suemune, Appl. Phys. Lett. 74, 1254 (1999).
8. W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999).
9. A. Lindsay and E. P. O’Reilly, Solid State Commun. 112, 443 (1999).
10. C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, J. F. Geisz and J. M. Olson, Appl. Phys. Lett. 76, 2409 (2000).
11. T. Mattila, S. H. Wei, and A. Zunger, Phys. Rev. B 60, R11245 (1999).
12. Y. Zhang, A. Mascarenhas, H. P. Xin and C. W. Tu, Phys. Rev. B 61, 7479 (2000).
13 J. S. Wang, H. H. Lin., and L. W. Song, IEEE J. Quantum Electron. 34, 1959 (1998).
14. J. S. Wang, H. H. Lin, L. W. Song and G. R. Chen, J. Vac.Sci. Technol. B 19 202 (2001).
15. J. S. Wang, and H. H. Lin, J. Vac.Sci. Technol. B 17 1997 (1999).
16. J. C. Fan, W. K. Hung, Y. F. Chen, J. S. Wang and H. H. Lin, Phys. Rev. B 62, 10990 (2000).
17. W. K. Hung, K. S. Cho, M. Y. Chern, Y. F. Chen, D. K. Shih, H. H. Lin, C. C. Lu, and T. R. Yang, Appl. Phys. Lett. 80, 796 (2002).
18. T. Y. Chu, H. H. Lin, and D. K. Shih, Electron Devices and Material Symposia, pp.126-129, Kaohsiung, Taiwan, R.O.C., 2001.
19. L. W. Wong, S. J. Cai, R. Li, K. Wang, H. W. Jiang, and M. Chen, Appl. Phys. Lett. 73, 1391 (1998).
20. J. Merino and Ross H. McKenzie, Phys. Rev. B 62, 2416 (2000).
21. A. Saxler, P. Debray, R. Perrin, S. Elhamri, W. C. Mitchel, C. R. Elsass, I. P. Smorchkova, B. Heying, E. Haus, P. Fini, J. P. Ibbetson, S. Keller, P. M. Petroff, S. P. DenBaars, U. K. Mishra, and J. S. Speck, J. Appl. Phys. 87, 369 (2000).
22. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
23. A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988).
24. B. P. Dolan, Phys. Rev. B 62, 10278 (2000).
25. T. Wang, K. P. Clark, G. F. Spencer, A. M. Mack, and W. P. Kirk, Phys. Rev. Lett. 72, 709 (1994).
26. C. H. Lee, Y. H. Chang, Y. W. Suen, and H. H. Lin, Phys. Rev. B 58, 10629 (1998).
27. C. F. Huang, Y. H. Chang, C. H. Lee, H. T. Chou, H. D. Yeh, C.-T. Liang, Y. F. Chen, H. H. Lin, H. H. Cheng, and G. J. Hwang, Phys. Rev. B 65, 045303 (2001).
28. H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988).
29. S. Koch, R. J. Haug, K. v. Klitzing, and K. Ploog, Phys. Rev. B 43, 6828 (1991).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔