(3.238.186.43) 您好!臺灣時間:2021/03/01 08:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江伯源
研究生(外文):Po-Yuan Chiang
論文名稱:米粉絲的製作技術-磨粉方法與澱粉添加對產品性質的影響
論文名稱(外文):Processing Technology of Rice Noodles: Effect of Milling and Starch on Quality of Product
指導教授:葉安義葉安義引用關係
指導教授(外文):An-I Yeh, Ph. D.
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:219
中文關鍵詞:米粉絲澱粉流變性質官能品評浸漬磨粉方法粒徑大小
外文關鍵詞:rice noodlesstarchrheological propertiessensory evaluationsoakingmilling methodparticle size
相關次數:
  • 被引用被引用:23
  • 點閱點閱:2536
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:336
  • 收藏至我的研究室書目清單書目收藏:2
摘 要
米粉絲是國人所喜愛的米食製品,影響其品質的因子眾多,如原料米、磨粉方法、粒徑大小、加工條件等均是重要資訊;近年來由於我國原料米成本較高,業者常加入澱粉以降低成本,有關磨粉方法及澱粉添加對米粉絲品質有何影響?目前並未完全明瞭,因此有關米穀粉理化特性、加工條件與米粉絲品質之相關性探討,將是本實驗的研究重點。
實驗結果顯示,濕磨法因浸漬、研磨時,有水分的滲入,可製得較乾磨粉粒徑小、破損澱法少的米穀粉;米穀粉的粒徑大小與化學成分(粗蛋白、粗脂質、灰分)呈正相關,其會影響米穀粉及米粉絲的色澤,b值上升,W.I.值下降。乾磨米穀粉粒徑在48.1 ~ 200.4μm範圍(破損澱粉率<5﹪)、濕磨米穀粉粒徑在15.7 ~ 222.2μm範圍可製得抗拉強度、品評得分較高、烹煮損失率較低的米粉絲。
澱粉的添加會改變米粉絲原料粉的理化特性,如馬鈴薯澱粉及小麥澱粉隨添加比例增加與膨潤力、損耗正切tanδ呈正相關;馬鈴薯澱粉、玉米澱粉、小麥澱粉添加量在10~40 ﹪時,可使RVA最終粘度下降、米粉絲抗拉強度增加,米粉絲烹煮損失率下降,可降低米粉絲加工操作時之粘性,並可改善米粉絲品質,並使米粉絲呈現不同特性。
膨潤力及損耗正切tanδ與米粉絲抗拉強度呈正相關,與米粉絲烹煮失率呈負相關,可作為判斷米粉絲原料粉品質的指標之一。米粉絲的加工條件、粿糰水分、蒸煮、攪拌、壓延、擠絲均會影響米粉絲的製程及品質。粿糰水分含量及加熱處理會影響米粉絲的糊化度,糊化度增加會增強米粉絲的抗拉強度及減少烹煮損失率。攪拌、壓延有助於米粉絲成分均勻,組織重新組合、排列,可提高米粉絲的抗拉強度及減少烹煮損失率。而擠絲壓力之控制,不僅會影響米粉絲的膨潤性及微細構造,也會影響其品質及商品價值。二次蒸煮利用熱傳、增加糊化度及成分變化,有助米粉絲的口感及接受性之提升,電子顯微鏡觀察與切片染色觀察結果顯示,濕磨米穀粉存有較多單獨顆粒,在研磨、篩分過程中容易發生靜電吸附造粒情形,經水洗、乾燥後可去除此情形;乾磨米穀粉顆粒為一層狀構造,平均粒徑29.2μm時,經水洗會呈粘稠狀構造。
在RVA糊化物及米粉絲橫切面的微細構造,發現粒徑大的米穀粉製成之米粉絲,因粒子數及空隙之關係,會呈現較大孔洞之網狀構造,乾磨米穀粉平均粒徑21.4μm時RVA糊化物呈粘稠狀構造,米粉絲橫切面網狀構造有斷裂現象(破損澱粉>5﹪),是否構成米粉絲在21.4~29.2μm時,抗拉強度下降之原因,有待進一步証實。粿糰水分會影響米粉絲糊化度,糊化度有助於米粉絲橫切面網狀構造的形成;擠絲壓力愈大,其米粉絲橫切面的孔洞網狀構造會愈大,外表會較平滑,由米穀粉及米粉絲微細構造觀察可作為米粉絲品質判斷及改善的輔助參考指標。
Abstract
Rice noodles are the favorite rice product of compatriots. There were many factors that might influence the quality of rice noodles. For example, material rice, milling methods, particle size and process conditions were important information of the quality of rice noodles. Recently, because of the cost of material rice was a higher, businesses added starch to reduce the cost. Effect of milling methods and add starch on the quality of rice noodles were not unclear completely so far. Therefore, this aim of experiment was to study the correlation between the physic chemistry properties of rice flour, processing conditions and the quality of rice noodles. The results were as follows.
When soaking and grinding, water might diffuse into rice. Because of the osmosis, diffusion and moisten of water, wet milling could obtain rice flour that particle size and damaged starch content rice was smaller and lower than dry milling. The correlation between particle size and chemical components (crude protein, crude lipid and ash) of rice flour was right. Particle size of rice flour influenced the color of rice flour and rice noodles. With increase of particle size of rice flour, b value was increasing and W.I. value was decreasing. The particle size of dry milling and wet milling of rice flour was from 48.1μm to 200.4μm (damaged starch content <5 %) and from 15.7μm to 222.2μm. That rice flour could produce rice noodles with lower tensile strength, higher sensory evaluation and lower cooking loss.
Addition of starch might change the physicochemical properties of rice flour of rice noodles. For example, with added level of potato starch and wheat starch increasing, swelling power and tanδof rice flour increased. When adding 30~40 % potato starch, corn starch and wheat starch, it could lower RVA final viscosity of rice flour, increase tensile strength of rice noodles and lower cooking loss of rice noodles. At the same time, it could lower the viscosity of rice noodles at processing and improve the quality of rice noodles. Adding starch could present different characteristics.
With swelling power, and tanδincreasing, tensile strength of rice noodles was increased and cooking loss was decreased. Therefore, swelling power and tanδof rice noodles could be the index of determining the quality of rice noodles. The processing condition of rice noodles, e.g. moisture content of rice dough, cooking, mixing, rolling and extracting, might influence the quality and produce process. Moisture content and heating of rice dough could influence the degree of gelatinization of rice noodles. When degree of gelatinization was increasing, it could enhance tensile strength and reduce cooking loss of rice noodles. Mixing and rolling improved the components of rice noodles mix well. Its also could make texture to be recombine and increase tensile strength and reduce cooking loss of rice noodles. To controlling the extract pressure could not only influence swelling power and microstructure of rice noodles, but also influence the quality and the commodity price. Secondary cooking was used heat conduction to increase degree of gelatinization and to change components. It could promote the texture and acceptation of rice noodles.
The results of observation of electron microscope and slice dyeing showed that rice flour from wet milling retained more single granules. Granules happened static electricity adsorption and agglomeration at grinding and sieving. After washing and drying, this situation could be improved. Rice flour granules from dry milling were a layer structure. The average particle size of rice flour was 29.2μm. After washing, rice flour particles would become thick structure.
On observation of the microstructure of RVA rice flour pastes and the cross-section o rice noodles, it could find that rice noodles made from large particle size of rice flour had larger pores and net structure, because of the number of particles and space. When the average particle sizes of rice flour with dry milling was 21.4μm, RVA rice flour pastes presented thick structure. The cross section of net structure of rice noodles had cracks (damaged starch content >5%). It must to go a step further to prove that the cause of tensile strength decreasingly when particle size of rice noodles was 21.4~29.2μm. The moisture content of rice dough might influence the degree of gelatinization of rice noodles. the degree of gelatinization facilitated the formation of the cross section net structure of rice noodles. Larger extract pressure would make the pores of the cross section net structure of rice noodles become bigger. It made surface smoother. The observation of microstructure of rice flour and rice noodles would be the index of determination of the quality of rice noodles and improvement.
目 錄
前言………………………………………………………………………1
文獻回顧 ………………………………………………………………..3
一. 米粉絲起源及現況…………………………………………………...3
二. 米粒結構與特性……………………………………………………...5
1. 米粒結構………………………………………………………….5
2. 米粒硬度………………………………………………………….9
3. 米種的選擇……………………………………………………...10
三. 磨粉方法對米榖粉理化特性的影響……………………………….12
(一)磨粉方法………………………………………………………..12
1.乾磨法……………………………………………………………...12
2.半乾磨法…………………………………………………………...13
3.濕磨法……………………………………………………………...13
(二)粒徑……………………………………………………………..15
(三)破損澱粉………………………………………………………..17
四. 米粉絲加工條件及影響因子……………………………………….17
1. 粿糰之水分………………………………………………18
2. 攪拌……………………………………………………………...18
3. 粿糰蒸煮…………………………………………………19
4. 二次蒸煮及乾燥………………………………………………...19
5. 添加物之影響…………………………………………………...19
材料與方法…………………………………………………………….22
一. 實驗材料…………………………………………………………….22
1. 米………………………………………………………………...22
2. 澱粉……………………………………………………………...22
二. 實驗流程…………………………………………………………….22
1. 實驗流程圖……………………………………………………...23
2. 濕磨米穀粉製備之流程………………………………………24
3. 乾磨米穀粉製備之流程………………………………………25
三. 實驗設備…………………………………………………………….26
1. 磨粉(漿)機……………………………………………………26
2. 離心機…………………………………………………………...26
3. 乾燥機…………………………………………………………...26
4. 搖篩機…………………………………………………………26
5. 迫粿機………………………………………………………….27
6. 壓延機………………………………………………………….27
7. 米粉擠絲機…………………………………………………….27
8. 蒸箱……………………………………………………………..27
四. 實驗方法…………………………………………………………….27
(一)樣品處理………………………………………………………..27
1. 浸漬處理………………………………………………………...27
2. 濕磨米榖粉……………………………………………………...27
3. 乾磨米榖粉……………………………………………………...28
4. 米澱粉…………………………………………………………...28
5. 米粉絲製備……………………………………………………...28
(1)不同粒徑之米粉絲………………………………………….28
(2)不同糊化度之米粉絲………………………………………28
(3)不同擠絲壓力之米粉絲……………………………………..29
(4)不同攪拌、壓延次數………………………………………..29
(5)二次蒸煮之米粉絲…………………………………………..29
(6)澱粉添加之米粉絲…………………………………………..29
(二)分析項目…………………………………………………………30
1.一般成分分析……………………………………………………30
(1) 水分測定………………………………………………..30
(2) 粗蛋白測定……………………………………………..30
(3) 粗脂肪測定……………………………………………..30
(4) 灰份測定………………………………………………..30
2.理化特性分析……………………………………………………31
(1)色澤分析(Color test)………………………………..31
(2)粒徑分佈(Particle size distribution)…………………31
(3)吸水性指標(Water absorption index)………………..32
(4)水溶性指標(Water soluble index)及膨潤力(Swelling power)…………………………………….32
(5) 凝膠黏稠度(Gel consistency)……………………….32
(6) 糊化連續黏度(RVA)…………………………………33
(7) 流變性質(Dynamic rheological pwperties)…………..33
(8) 示差熱掃描分析儀(DSC)…………………………….34
(9) 破損澱粉(Damaged starch)………………………….34
(10) 直鏈澱粉含量(Amylose content)………………….35
(11) 掃描式電子顯微鏡(SEM)觀察……………………36
a. 米粒……………………………………………………36
b. 米穀粉…………………………………………………36
c. RVA糊化物……………………………………………36
d. 米粉絲…………………………………………………37
(12) 切片染色觀察………………………………………..37
3.米粉絲品質分析…………………………………………………38
(1)色澤分析(Color test)…………………………………38
(2)膨潤性(Swell ratio)…………………………………..38
(3)物性分析(Physical properties analysis)………………38
a. 質地分析(Texture profile analysis)…………………38
b. 抗拉強度(Tensile profile analysis)………………….39
(4)糊化度(Degree of gelatinization)……………………..39
(5)蒸煮損失率(Cooking loss)…………………………..40
(6)品評分析(Sensory evaluation)………………………41
4.統計分析 ………………………………………………………..41
結果與討論 ……………………………………………………………44
第一章 浸漬對米濕磨處理之影響 …………………………………44
一. 米粒之吸水………………………………………………………….44
二. 浸漬對米粒成分之影響…………………………………………….44
三. 浸漬對粒徑之影響………………………………………………….47
四. 浸漬對破損澱粉之影響 …………………………………………...47
五. 吸水性指標與破損澱粉之關係 …………………………………...51
六. 米粒微細構造之變化……………………………………….51
七. 熱性質分析………………………………………………………….56
八. 糊化連續黏度分析………………………………………………….58
九. 結論………………………………………………………………….58
第二章 磨粉方法對米榖粉理化特性及米粉絲品質之影響 ………62
一.磨粉方法對米榖粉理化特性之影響……………………………….62
(一)粒徑分佈…………………………………………………………62
(二)粒徑與化學成分之關係………………………………………..62
(三)粒徑、化學成分與色澤之關係………………………………..64
(四)粒徑與直鏈澱粉………………………………………………..69
(五)粒徑與破損澱粉…………………………………………………69
(六)粒徑、破損澱粉與凝膠粘稠度………………………………..72
(七)膨潤力及水溶性指標與流變性質……………………..72
1. 粒徑與膨潤力及水溶性指標之關係………………………….72
2. 粒徑與流變性質之關係……………………………………….77
(1)不同磨粉方法米穀粉之流變性質…………………………..77
(2)膨潤力與貯存模數之關係…………………………………..81
(八)糊化連續黏度(RVA)分析…………………………………..83
(九)熱性質分析………………………………………………………83
(十)微細構造…………………………………………………………86
(十一)光學顯微鏡切片染色觀察…………………………………..93
二.磨粉方法對米粉絲品質之影響…………………………………….93
(一)粒徑對米粉絲色澤之影響……………………………………..93
(二)粒徑對米粉絲糊化度、烹煮損失率之影響……………………..97
(三)粒徑、黏膠稠度對米粉絲抗拉強度之影響……………………100
(四)膨潤力對米粉絲抗拉強度、烹煮損失率之影響……………..103
(五)米粉絲之微o細構造……………………………………………103
(六)粒徑對米粉絲質地(品評)之影響…………………………..107
(七)抗拉強度對米粉絲質地(品評)之影響…………………….110
三.相關性(Correlation coefficiet)分析……………………………..113
四.結論………………………………………………………………123
第三章 澱粉添加對米榖粉理化特性及米粉絲品質之影響………125
一.澱粉添加對米榖粉理化特性之影響……………………………125
1. 米穀粉與澱粉之平均粒徑與直鏈澱粉含量…………………….125
2. 米穀粉與澱粉顆粒之微細構造(SEM)………………………..127
3. 熱性質分析……………………………………………………….127
4. 糊化連續粘度分析……………………………………………136
5. 膨潤力分析……………………………………………………….142
6. 流變性質………………………………………………………….148
二.澱粉添加對米粉絲品質之影響…………………………………...154
1. 澱粉添加對米粉絲抗拉強度之影響…………………………….154
2. 澱粉添加對米粉絲烹煮損失率之影響………………………….156
3. 澱粉添加對米粉絲品評分析之影響…………………………….156
4. 澱粉添加對米粉絲微細構造(SEM)之影響………………….163
三.相關性分析………………………………………………………169
四.結論……………………………………………………………….173
第四章 米粉絲製作技術及相關影響因子探討……………………175
一. 粿(糰)水分含量(Moisture content)之影響………………..175
1. 米粉絲的糊化度…………………………………………………175
2. 米粉絲的抗拉強度………………………………………………177
3. 米粉絲的烹煮損失率……………………………………………177
4. 米粉絲微細構造(SEM)………………………………………177
二. 糊化度(Degree of gelatinization)之影響…………………….178
1. 糊化度對烹煮損失率之影響…………………………………….178
2. 糊化度對抗拉強度之影響……………………………………….178
3. 糊化度對膨潤性之影響………………………………………….181
4. 糊化度對微細構造(SEM)之影響…………………………….181
5. 糊化度對米粉絲品評分析之影響……………………………….185
三. 攪拌(Mixing)和壓延(Kneading)之影響………………….188
四. 擠絲壓力(die pressure)之影響………………………………..191
五. 二次蒸煮(2nd cooked test)之影響…………………………….196
六. 結論………………………………………………………………199
結語………………………………………………………………204
參考文獻………………………………………………………………206
附表……………………………………………………………………217
參考文獻
中國國家標準. 1987. 米粉(米粉絲). 經濟部中央標準局印. 總號11172.
中國國家標準. 1987. 米粉(米粉絲)檢驗法. 經濟部中央標準局印.總號11173.
王俊權、張永和. 1997. 顆粒大小對米榖粉物理性質及熱焓特性的影響. 食品科學24:319-330.
王豐洲、李榮輝、張壽昌、李敏雄、黃福民. 1974. 即食麵保久性改良之研究. 食品工業發展研究所. 研究報告第73號.
呂青岩、黃世佑. 1981. 米粉製造之探討第一報. 食品科學8(1):
88-91.
李柏宏、楊鵑華、張為憲. 1994. 澱粉液化酶在米粒中之分佈及其活性對米製品加工性質之影響. 農委會八十三年度研究計劃報告.
李正雲. 2002. 澱粉對肌肉蛋白質成膠性之影響. 國立台灣大學食品科技研究所博士論文.
宋勳. 1974. 台灣長秈稻品質之探討. 台灣農業季刊12:98-102.
宋勳. 1986. 稻米品質分級與改善.四十年來台灣地區稻作生產改進專輯. P.109-125. 台灣台中.
林文明. 1978. 稻米在貯藏時期的化學物理性質變化之研究. 中國文化大學碩士論文. 台灣台北.
食品產業資料庫. 2001. 食品工業發展研究所. 台灣新竹.
吳美雲等人編輯. 1983. 真味專輯(2)、米食-粿粉篇. P.41-47.
吳景陽、陳文亮. 1988. 米粉絲加工現代化. 食品工業發展研究所. 研究報告第532號.
高崇烈、林貞信. 1999. 螺軸轉速、進料含水率和玉米澱粉添加量對擠壓米粉絲膨發特性和強度的影響. 食品科學26:411-422.
高銘都、黃義祿. 1988. 病理組織切片技術-切片標本製作及各種染色法. 南山堂出版社. 台灣台北.
孫敬全. 1998. 小麥澱粉與米澱粉之交互作用對凝膠、糊化之影響. 中國文化大學碩士論文.
陳錦模、黃福民、王振勇、王一凱. 1971. 紅外線乾燥、熱風乾燥及陽光乾燥對米粉品質之影響. 食品工業發展研究所. 研究報告第16號.
陳文亮、江伯源. 1986. 新育成秈米製造米粉適性研究. 食品工業發展研究所. 研究報告第428號.
陳賢哲、朱燕華. 1987. 蓬萊米加工性質之改良方法. 中華民國專利26104號.
陳文志. 1988. 不同研磨技術對米粉理化特性之研究及新產品之開發.國立中興大學食品科學系碩士論文.
陳宣佑. 1997. 蒸煮過程和鹽含量對麵品質及抗解澱粉之影響. 國立台灣大學食品科技研究所碩士論文. 台北.
陳季洲、盧訓、呂政義. 1998. 磨粉方法對糯性米榖粉理化特性之影響. 中國農業化學會誌36:272-28.
陳季洲. 1999. 稻米硬度與研磨對米榖粉粒徑分佈及理化特性之影響.國立中興大學食品科學系博士論文.
葉安義、須文宏、沈家緒、林子清. 1989. 溫度對米粒吸收水分的影響. 食品科學16:319-327.
葉安義、須文宏、沈家緒. 1991. 利用雙軸擠壓機製造米粉絲之特性研究. 中國農業化學會誌29:340-351.
張長泉、劉延英. 1978. 台灣不同米品種之澱粉特性. 食品科學6:114-122.
張永和、朱麗雯、蘇女淳. 1996. 不同品種稻米水分擴散與澱粉糊化速率之探討. 食品科學23:739-751.
新竹米粉產業史. 1998. 新竹市立文化中心. 台灣新竹.
楊啟春、賴惠民、呂政義. 1984. 米澱粉分離法之改進. 食品科學11:158-162.
楊鵑華. 1994. 半乾磨米榖粉之製備、加工性質及其影響因素之研究.國立台灣大學農業化學研究所博士論文.
劉怡佐. 2000. 影響混合澱粉糊化行為之因素. 中國文化大學碩士論文.
盧訓、林明三、呂政義. 1989a. 台灣稻米硬度之測定.食品科學16:338-346.
盧訓、呂政義. 1989b. 不同研磨法對米粉理化性質之影響及米雪片之試製. 食品科學16:22-29.
韓建國、吳景陽. 1989. 蓬萊米製作米粉絲之研究. 食品工業發展研究所.研究報告第582號.
謝嘉輝. 1997. 貯藏一年後之稻穀經不同碾白處理其理化特性及其產品差異性之比較. 國立中興大學食品科學系碩士論文.
今井徹. 1984. でん粉な利用した麵の品質向上. 食品と科學7:85-89.
石井修一、江川和德、齋藤昭三. 1980. ライス、ヌ-ドの製造條件につて. 新瀉縣食品研究所研究報告17:33-36.
石井修一、江川和德、有板將美、期藤昭三. 1983. 米加工食品製造におる蛋白質の影響に關する研究. 新瀉食品研究所研究報告19:31-40.
倉澤文夫. 1982. 米どその加工. 建帛社.
福場博保. 1988. 炊飯の科學. 全國米榖協會(日本)財團法人.
齋藤昭三. 1980. 食品加工原料としてのコメ澱粉とコメ粉. 澱粉科學27(4):295-313.
齋藤昭三. 1981. 製果事典.渡邊長男、鈴木繁男、岩尾裕之、小原哲二郎等人編集. P.38-46. 朝倉書店. 日本.
Almeida, H. D., Suhendro, E. L., and Rooney, L. W. 1997. Factors affecting rapid viscoanalyzer curves for the determination of maize kernel hardness. J. Cereal Sci. 25:93-102.
American Association of Cereal Chemists. Approved methods of the AACC, Methods,44-15A, 46-11A, 30-10, 08-01, 76-30A, 61-02. The Association:St. Paul, MN.(2000).
Ann Preece, H. T. 1978. A manual for Histologic Technicans. Little Brown and Company, Boston.
Anderson, R. A., Conway, H. F., Pfeifer, V. F., and Griffin, E. L., Jr. 1969. Gelatinization of corn grits by roll- and extrusion-cooking. Cereal Science Today 14:4-12.
Arisaka, M., Nakamura, K., and Yoshii, Y. 1992. Properties of Rice flour prepared by different milling methods. Denpun Kagaku. 39:155-163.
Bean, M. M. 1986. Rice flour-its functional variations. Cereal Foods World. 31:477-481.
Blakeney, A.B. 1996. Rice. In:”Cereal Grain Quality”, Henry, R.J., and Kettlewell, P. S. (Eds). PP.55-59, Chapman & Hall, London, UK.
Chanpagne, E. T., Marshall, W. E., and Goynes, W. R. 1990. Effects of degree of milling and lipid removal on starch gelatinization in the brown rice kernel. Cereal Chem. 67:570-574.
Chen,J, J., and Lu. S. 1997. Effect on the physicochemical characteristics by milling methods of waxy rice in Taiwan(Abstr.).Cereal Foods World. 42:629.
Chiang, P.Y., and Yeh, An. I. 2002. Effect of Soaking on wet-milling of rice. J. Cereal Sci. 38:85-94.
Dexter, J. E. and Matsuo, P. R, 1979. Effect of starch on pasta dough Rheology and spaghctti cooking quality. Cereal Chem. 56(3):190-195.
Dexter, J. E., Preston, K. R., Martin, D. G., and Gander, E. J. 1994. The effects of protein content and starch damage on the physical dough properties and bread-making quality of Canadian durum wheat. J. Cereal Sci. 20:139-151.
Ellinger, R. D. 1972. Phosphates in Food Processing. In Handbook of Food Additives, volume 1, 2nd edition, CRC Press, Inc, New York, PP.617-780.
Evers, A. D., and Juliano, B.O.1976. Varied differences in surface ultra structure of endosperm cells and starch granules of rice Starch/Stärke. 28:160.
FAO, Agricultural Data. The Data Collections in Crops & Livestock Primary & Processed in the Domain of Agriculture & Food Trade, Food and Agriculture Organization of the United Nations.(2000)
Fitt, L. E., and Snyder, E. M. 1984. Photomicrographs of starch. Ch 23. in “Starch : Chemistry and Technology. ” Whistler,12.L., Bemiller,J. N., and E. F. Paschall E.F. (Eds), Academic Press, Inc. Orlando. PP.675-689.
Grant, L. A.1998. Effects of starch isolation, drying, and grinding techniques on its gelatinization and retrogradation properties. Cereal Chem. 75:590-594.
Harrigan, K. A. 1997. Particle size analysis using automated image analysis. Cereal Foods World. 42:30-35.
Hatcher, D. W., Anderson, M. J., Desjardins, R. G., Edwards, N. M. and Dexter, J. E. 2002. Effect of flour particle size and Starch damage on processing and Quality of white salted Noodles. Cereal Chem. 79:64-71.
Hayakawa, T., Seo, S. W., and Igaue, I. 1980. Electron microscopic observation of rice grain. Part I. Morphology of rice starch. J. Jap. Soc. Starch Sci. 27:173-179.
He, G. C., and Suzuki, H. 1989. A method to remove the outer layer of rice endosperm without damaging starch granules. Cereal Chem. 65:307-312.
Hemavathy, J., and Bhat. K. K. 1994. Effect of particle size on Viscoamylographic behaviors of rice flour and vermicelli quality. J. Texture Stud. 25:469-476.
Jane, J., Kasemsuwan, T., Leas, S., Zobel, H., and Robyt, J. F. 1994. Anthology of starch granule morphology by scanning electron microscopy. Starch/Stärke. 46:121-129.
Jomduang, S., and Mohamed, S.1994. Effect of amylose/amylopectin content, milling methods, particle size, sugar, salt and oil on the puffed product characteristics of a traditional thai rice-based snack food(Khao Kriap Waue). J Sci Food Agri. 65:85-93.
Juliano, B. O. 1975. The gel consistency and viscosity test as an index of eating quality of mill rice. Int’1. Rice Res. Inst., Los Banos, Philipines.
Juliano, B. O. 1979. The chemical basis of rice grain quality. In”proceedings of the workshop on chemical aspects of rice grain quality”. IRRI. LOS Banos., Laguna. Philippines. 69-90.
Juliano, B.O., and Bechtel, D. B. 1985a. The rcie grain and its gross composition. In:Rice Chemistry and Technology(B. O. Julianoed.),2nd ed., PP.17. Amer. Assoc. Cereal Chem., St. Paul.
Juliano, B. O. 1985b. Polysaccharides, Proteins, and Lipids of rice. In :Rice:Chemistry and Technology(B. O. Julianoed.),2 nd ed., PP.59, Amer. Assoc. Cereal Chem., St. Paul.
Juliano, B. O., and Hicks, P. A. 1996. Rice functional properties and rice food products. Food Reviews International. 12:71-103.
Kainuma, K., Matsunaga, A., Itagawa, M., and Kobayashi, S. K. 1981. New enzyme system bata-amylase-pullulanase to determination the degree of gelatinization and retrogradation of starch or starch products. J. Jap Soc. Starch Sci. 28:235.
Kanchanapakornchai, U. 1980. Prelimnary Studies on Porduction of Rice Noodles Supplemented with Soy Flour, Food. 12(4)346-355.(FSTA, 15, 1983, M264).
Kim, W. S., and Seib, P. A. 1993. Apparent restriction of starch swelling in cooked noodle by liquid in some commercial wheat flours. Cereal Chem. 70:367-372.
Konik, C. M., Miskelly, D. M., and Gras, P. W. 1992. Contribution of starch and non-starch parameters to the eating quality of Japanese white salted noodle. J. Sci. Food Agric. 58:403-406.
Konik, C. M., Mikkelsen, L. M., Moss, R. and Gore, P. J. 1994. Relationships between physical starch properties and yellow alkaline noodle quality. Starch/Stärke. 46:292-299.
Lelievre, J.1974. Starch damage. Starch/Stärke. 26:85.
Lii, C. Y., Chang, S. M., and Yang, H. L. 1986. Correlation between the physico-chemical properties and the eating quality of milled rice in Taiwan. Bull. Inst. Chem. Academia Sinica. 33:55-62.
Li, J. Y. and Yeh An. I. 2001. Relationships between thermal, rheological characteristics and swelling power for various starches. J. Food Eng. 50:141-148.
Malaysian Standard, 1985, MS 955(UDC 664-694).
Marshall, W. E., Normand, F. L., and Goynes, W. R. 1990. Effects of lipid and protein removal on starch gelatinization in whole grain milled rice. Cereal Chem. 67:458-463.
Marshall, W. E. 1992. Effect of degree of milling of brown rice and particle size of milled rice on starch gelatinization. Cereal Chem. 69:632-636.
Medcalf, S. L., and Lund, D. B. 1985. Factors affecting water uptake in milled rice. J. Food. Sci. 50:1676-1679.
Merca, F. E., and Juliano, B. O. 1981. Physicochemical properties of starch of intermediate-amylose and waxy rices differing in grain quality. Starch/Stärke. 33:253-260.
Mesters, C., Colonna. P., and Buleon, A. 1988. Characteristics of starch networks within rice flour noodles and mungbean starch vermicelli. J. Food Sci. 53:1809-1812.
Mohri, Z. 1980. Interaction between Starch and Fatty Acid Esters in Frozen Starch Noodles. Agric. Biol. Chem. 44(7):1455-1459.
Momose, H. 1981. Quality estimation of rice used for sake brewing. Nippon Shokuhin Kohyo Gakkaishi. 28:396-404.
Morrison, W. R., and Laignelet B. 1983. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1, 9-20.
Morrison, W. R. Gadan, H. 1987. The amylose and lipid contents of starch granules in developing wheat endosperm. J. Cereal Sci, 5: 263-275.
Morrison, W. R., Tester, R. F., and Gidley, M. J. 1994. Properties of starch of intermediate-amylose and waxy rice differing in grain quality. Starch/Stärke. 33:253-260.
Morrison, W. R., Tester, R. F., and Gidley, M. J. 1994. Properties of damaged starch granules. II. Crystallinity, molecular order and gelatinization of ball-milled starches. J. Cereal Sci. 19:207-217.
Nishita, K. D., and Bean, M. M. 1982. Grinding Methods:Their impact on rice flour properties. Cereal Chem. 59:46-49.
Normand, F. L., and Marshall, W. E. 1989. Differential scanning calorimetry of whole grain milled rice and milled rice flour. Cereal Chem. 66:317-320.
Norris, K. H., Hruschka, W. R., Bean, M. M., and Slarghtter, D. C. 1989. A definition of wheat hardness using near-infrared reflectance spectroscopy. Cereal Foods World. 34:696-705.
Nowakowski, D., Sosulki, F. W., and Hoover, R. 1986. The effect of pin and attrition milling on starch damage in hard wheat flours. Starch/Starke. 38:253-258.
Park, N. K., Seog, H. M., Nam, Y. J., and Shin, D. H. 1988. Physicochemical properties of various milled rice flours. J. of Kor. Food Sci. and Technol. 20:504-510.
Perez, C. M., and Juliano, B. O. 1981. Texture changes and storage of rice. J. of Texture Stud. 12:321-333.
Pomeranz, Y., and Webb, B. D. 1985. Rice hardness and fuctional properties. Cereal Foods World, 30: 784-790.
Pomeranz, Y. 1986. Composition of screening methods for indirect determination of sorghum hardness. Cereal Chem. 63:36-38.
Preston, K. R., Kilborn, R. H., and Dexter, J. E. 1987. Effects of starch damage and water absorption on the Amylograph properties of Canadian hard red spring wheats. Canadian Institute of Food Science and Technology 20 (2):75-80.
Resmini, P., and Pagani, M. A. 1983. Ultrastructure studies of pasta. A review. Food microstructure. 2:1-12, 98.
Reyes, A. C., Alban, E. L., Briones, V. P., and Juliano, B. O. 1965. Varietal differences in physicochemical properties of rice starch and its fractions. J. Agri Food Chem, 13:438.
Roberts, R. L., Potter, A. L., Kester, E. B., and Keneaster, K. K. 1954. Effect of processing conditions on the expanded volume, color and soluble starch of parboiled rice. Cereal Chemistry. 31:121.
Saio, K., and Noguchi, A. 1983. The microstructure of polished, milled and air classified rice and rice bran. Nippon Shokuhin Kogyo Gakkaishi. 30: 331~338.
Saikusa, T., Horino, T., and Mori, Y. 1994. Distribution of free amino acid in the rice kernel fractions and the effect of water soaking on the distribution. J. Agric. Food Chem. 42:1122-1125.
Saito, S.1980. Rice starch and rice powder as materials for food industry. J. Jap. Soc. 27:295-313.
Sasaki, T., and Seib, P. A. 1996. Australian salt-noodle flours and their starches compared to us wheat flours and their starches. Cereal Chem. 73:167-175.
Schoch, T. J. 1964. In” Methods in Carbohydrates Chemistry ” 4:106 R. L. Whistler(ed.), Acedemmic Press, N. Y.
Singapore Standard, 1980. 237 (UDC 664.694)
Shin, M. G., Rhee, J. S. and Knon, T. W. 1985. Effects of amylase activity on change in amylograph characteristics during storage of brown rice. Agri. Biol. Chem. 49:2505-2508.
Snyder, E. M. 1984. Industrial Microscopy of starches. Ch. 22 in “Starch : Chemistry and Technology.” Whistler, R. L. Bemiller, J. N., and Paschall E. F. (Eds.), Academic Press, Inc. Orlando. Pp.661~673.
Stevens, D. J., and Elton, G. A. H. 1971. Thermal properties of the starch/water system, Part 1 . Measurement of heat of gelatinization by differential scanning calorimetry. Starch/Stärke. 23:8-11.
Suggs, J. L., and Buck, D. F. 1980. Pasta Conditioner, U. S. Patent, 4:229-488.
Tester, R.F., and Morrison, W.R. 1990. Swelling and Gelatinization of cereal starches. I.Effects of amylopection, amylose and lipids. Cereal Chem. 67:551-557.
Toyokawa, H., Rubenthaler, G. L., Power, J. R., and Schanus, E. G. 1989. Japanese noodles qualities. II. Starch components. Cereal Chem. 66:387-391.
Tsai, M. L., Li, C.F. and Lii, C. Y. 1997. Effects of granular structures on the pasting behaviors of starches. Cereal Chem. 74:750-757.
Umali, J. G. 1981. Physico- Chemical properties of milled rice in relation to quality characteristics of noodles(Bihon). Master Thesis, University of the phillippines.
Villareal, R. M., Resurreccion, A. P., Suzuki, L. B., and Juliano, B. O. 1976. Change in the physicochemical properties of rice during aging. Starch/Stärke. 28:88-94.
Williams, P.C. 1979. Screening wheat for protein and hardness by near infared reflectance spectroscopy. Cereal Chem. 56:169-172.
Wang, L., & Seib, P. A. 1996. Australian salt-noodle flours and their starches compared to use wheat flours and their starches. Cereal Chem. 73:167-175.
Yeh, A-I., Hsiu, W.-H, and Shen, T. S.1992. Moisture diffusion and gelatinization in extruded rice noodles. In’Food Extrusion Science and Technology’, (J. L. Kokini, C.-T. Ho, and M. V. Karwe, eds.), Marcel Dekker, Inc., New York.pp.189-199.
Yamamoto, A. 1995. Physicochemical properties of rice steeped in hot warm water. J. Food Sci. 60:1307-1312.
Yeh, A. I. and Li, J.Y. 1996. Kinetics of phase transition of native, cross-linked and hydroxypropylated rice starches, Starch/ Stärke 48:17-21.
Young, A. H. 1984. Fractionation of starch. Ch. 8 in “starch : Chemistry and Technology,” Whistler R.L., Bemiller J. N., and Paschall E. F. (Eds.), Academic press, Inc. Orlando. Pp.249-283.
Yuan, J., Chung, D. S., Deib, P. A., and Wang, Y.1998. Effect of steeping conditions on wet-milling characteristics of hard red winter wheat. Cereal Chem.75:145-148.
Yun, S. -H., and Matheson, N. K. 1990.Estimation of amylose content of starches after precipitation of amylopectin by concanavalin-A. Starch/Stärke 42:302-305.
Zhang, T. Y., Baksi, A. S., Gustafson, R. J., and Lund, D. B. 1984. Finite element analysis of nonlinear water diffusion during rice soaking. J. Food Sci. 49:246-250.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 高崇烈、林貞信. 1999. 螺軸轉速、進料含水率和玉米澱粉添加量對擠壓米粉絲膨發特性和強度的影響. 食品科學26:411-422.
2. 張永和、朱麗雯、蘇女淳. 1996. 不同品種稻米水分擴散與澱粉糊化速率之探討. 食品科學23:739-751.
3. 葉安義、須文宏、沈家緒、林子清. 1989. 溫度對米粒吸收水分的影響. 食品科學16:319-327.
4. 陳季洲、盧訓、呂政義. 1998. 磨粉方法對糯性米榖粉理化特性之影響. 中國農業化學會誌36:272-28.
5. 王俊權、張永和. 1997. 顆粒大小對米榖粉物理性質及熱焓特性的影響. 食品科學24:319-330.
6. 呂青岩、黃世佑. 1981. 米粉製造之探討第一報. 食品科學8(1):
7. 王豐洲、李榮輝、張壽昌、李敏雄、黃福民. 1974. 即食麵保久性改良之研究. 食品工業發展研究所. 研究報告第73號.
8. 楊啟春、賴惠民、呂政義. 1984. 米澱粉分離法之改進. 食品科學11:158-162.
9. 盧訓、林明三、呂政義. 1989a. 台灣稻米硬度之測定.食品科學16:338-346.
10. 盧訓、呂政義. 1989b. 不同研磨法對米粉理化性質之影響及米雪片之試製. 食品科學16:22-29.
11. 3. 李皇照、江嘉瑜(2001)「台灣花卉網站內容分析與比較」,機械工業雜誌,九月號,頁285-297。
12. 5. 吳忠宏、黃宗成(2000),「休閒農場遊客對環境解說需求之研究」,環境與管理研究,第一卷第二期,頁119-141。
13. 8. 林豐瑞(2000),「談如何研擬休閒農業行銷策略」,農業經營管理會訊,第二十四期,頁12-17。
14. 9. 周冠中、林佩璇(1998),「成功經營站六大法寶」,網路通訊雜誌,第八十六期,頁114-119。
15. 10. 段兆麟(1996),「休閒農業經營的合作策略」,合作發展月刊,頁18-22。
 
系統版面圖檔 系統版面圖檔