(3.237.178.91) 您好!臺灣時間:2021/03/07 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林恩豪
研究生(外文):En-Hau Lin
論文名稱:加工處理對雞蛋蛋黃中共軛亞麻油酸含量之影響
論文名稱(外文):Effect of Processing Treatment on Comjugated Linoleic Acid Content of Chicken Egg Yolk
指導教授:蘇和平
指導教授(外文):Hou-Pin Su
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:畜產學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:86
中文關鍵詞:共軛亞麻油酸蛋黃
外文關鍵詞:Conjugated linoleic acidYolk
相關次數:
  • 被引用被引用:4
  • 點閱點閱:332
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:3
共軛亞麻油酸 (conjugated linoleic acid, CLA) 是指一群由十八碳雙烯酸所組成的幾何 (geometric) 和位置 (positional) 異構物,由亞麻油酸 (linoleic acid, LA) 轉化而來,它們的雙鍵是以共軛的型式存在,富含於反芻動物的乳、肉及其製品中,對於人體的健康有許多正面的效果,在食品中所發現的主要為cis-9, trans-11-及trans-10, cis-12-CLA,其中又以cis-9, trans-11-CLA的型式為主。本研究的目的,是利用加工的方法提高蛋製品中共軛亞麻油酸的含量。經實驗結果顯示,(1) 市售加工過後的雞蛋製品,其共軛亞麻油酸含量皆顯著高於新鮮雞蛋 (0.83 mg/g oil),且cis-9, trans-11及trans-10, cis-12-CLA間之組成會受到加工之影響而變化。(2) 經過鹼處理10天的新鮮洗選雞蛋,其共軛亞麻油酸含量會顯著增加,比新鮮洗選雞蛋高約11.63%,而經過鹼處理20日後,共軛亞麻油酸含量則會顯著降低約16.81%。經過鹼處理10天的新鮮洗選雞蛋,再以70℃水浴加熱20分鐘,共軛亞麻油酸含量會些微增加,若經85℃烘烤20小時,則會顯著降低。(3) 經過酸處理48小時的新鮮洗選雞蛋,其共軛亞麻油酸含量會顯著降低約14.59%。(4) 經過食鹽處理10天的新鮮洗選雞蛋,其共軛亞麻油酸含量會顯著降低約38.66%,而cis-9, trans-11-CLA佔總CLA之百分比,也會隨浸漬時間之延長而顯著降低。(5) 經過酒精處理之新鮮洗選雞蛋,其共軛亞麻油酸含量及cis-9, trans-11及trans-10, cis-12-CLA間之組成,在20天的酒精處理期間均沒有顯著差異。(6) 經過70、80及90℃加熱30分鐘之新鮮洗選雞蛋,其共軛亞麻油酸含量會隨著加熱溫度之提高而顯著增加,但是cis-9, trans-11及trans-10, cis-12-CLA間之組成並不會有顯著的差異。在分別以85、95及105℃烘烤20小時的期間,雞蛋蛋黃中之共軛亞麻油酸含量皆會先增加而後減少,且烘烤溫度越高,其含量減少的時間越快,而cis-9, trans-11及trans-10, cis-12-CLA間之組成並沒有產生顯著差異。(7) 當分別以50、260、270、280及290℃進行蛋黃油萃取時,其共軛亞麻油酸含量以50℃萃取時最高,且以280及290℃進行萃取時,會造成共軛亞麻油酸嚴重的破壞,此外,cis-9, trans-11-CLA佔CLA異構物之百分比,也會隨萃取溫度之增加而顯著減少。(8) 當調整全蛋液之固形物含量且以不同之殺菌溫度處理,經過發酵後可以發現,以70℃殺菌之全蛋液為基質時,乳酸菌數會較高,而當固形物含量較高 (18.5%) 時,乳酸菌數及共軛亞麻油酸含量皆會顯著較高,而cis-9, trans-11及trans-10, cis-12-CLA間之組成並沒有產生顯著差異。由以上之實驗結果得知,加工條件及方法確實會對雞蛋蛋黃中共軛亞麻油酸含量造成影響,因此適當的加工條件,有助於提高雞蛋蛋黃中共軛亞麻油酸之含量。
Conjugated linoleic acid (CLA) is a collective term for a mixture of geometric and positional isomers of octadecadienoic acid (18:2) in which the double bonds are conjugated rather than methylene-separated as they are in linoleic acid (18:2, cis-9, trans-12). CLA is an intermediate in the course of the conversion of linoleic acid (LA) to oleic acid by the rumen bacterium Butyirivibrio fibrisolvens. CLA is abundant in milk, dairy products, and the meat of ruminant animals. It is present primarily in the cis-9, trans-11 modification. The object of this study is to raise the amount of CLA of chicken egg products during processing. The results indicate that: (1) the concentrations of CLA in commercial egg products are significantly higher than fresh chicken egg (0.83 mg/g oil), and the distribution of cis-9, trans-11 and trans-10, cis-12-CLA are effected by process. (2) The concentrations of CLA increased 1.12 fold in chicken egg yolk by alkaline treatment at 10th day, but decrease 1.20 fold by alkaline treatment at 20th day. The concentrations of CLA slightly increased by 70℃ heating 20 mins, but decreased significantly by 85℃ heating 20 hrs after alkaline treatment at 10th day. (3) The concentrations of CLA decreased 1.17 fold by acidic treatment for 48 hrs. (4) The concentrations of CLA decreased 1.63 fold by salt treatment at 10th day, and significant decreased the ratio of cis-9, trans-11-CLA to total CLA after salt treatment for 20 days. (5) The concentrations of CLA and distribution of cis-9, trans-11-CLA would not significantly different during alcoholic treatment period. (6) The concentrations of CLA significantly increased with heating temperature (70, 80, 90℃). The concentrations of CLA would increase first and then decrease significantly during baking (85, 95, 105℃) period. Both of the two treatments would not cause difference significantly on the ratio of cis-9, trans-11-CLA to total CLA. (7) The concentrations of CLA extracted in 50℃ would be the highest among different extractive temperature (50, 260, 270, 280, 290℃) , and CLA would be seriously destroyed in 280 and 290℃. Furthermore, the ratio of cis-9, trans-11-CLA to total CLA would decreased significantly with the increase of extractive temperature. (8) The results of effects of solid content and pasteurization temperature on CLA content of fermented whole liquid egg indicated that the CFU/mL of lactic acid bacteria would increase with the raise of solid content. The CFU/mL of lactic acid bacteria in fermented whole liquid egg media pasteurized in 70℃ would be the highest.
壹、摘要…………………………………………………………………1
貳、緒言…………………………………………………………………3
參、文獻檢討……………………………………………………………4
一、共軛亞麻油酸之生理功能…………………………………………4
(一) 結構及簡介………………………………………………….4
(二) 抗突變……………………………………………………….6
(三) 免疫調節…………………………………………………….7
(四) 體組成之調整……………………………………………….9
(五) 抗動脈硬化………………………………………………...10
二、共軛亞麻油酸之來源…………………………………………….13
(一) 生物合成…………………………………………………...13
(二) 化學合成…………………………………………………...13
(三) 加工過程形成……………………………………………...16
三、雞蛋中共軛亞麻油酸之來源…………………………………….18
(一) 內源性合成………………………………………………...18
(二) 飼糧之供給………………………………………………...18
四、加工處理對共軛亞麻油酸之影響………………………………..20
(一) 添加物……………………………………………………...20
(二) 加熱………………………………………………………...20
(三) 加工環境…………………………………………………...21
(四) 微生物發酵………………………………………………...22
(五) 包裝方式…………………………………………………...24
伍、甲基酯化方法對共軛亞麻油酸定量之影響…………………….25
肆、材料與方法……………………………………………………….27
一、材料……………………………………………………………….27
二、方法………………………………………………………………28
(一) 加工處理…………………………………………………...28
(二) 分析項目…………………………………………………...32
伍、結果與討論………………………………………………………40
一、市售蛋製品之共軛亞麻油酸含量………………………………40
二、鹼處理…………………………………………………………….43
三、酸處理……………………………………………………………46
四、食鹽處理………………………………………………………….51
五、酒精處理………………………………………………………….51
六、加熱處理………………………………………………………….56
(一) 水浴加熱…………………………………………………...56
(二) 烘烤………………………………………………………...56
七、不同溫度萃取之蛋黃油…………………………………………..61
八、發酵處理…………………………………………………………61
陸、結論………………………………………………………………68
柒、參考文獻………………………………………………………….71
捌、英文摘要…………………………………………………………..82
玖、作者小傳………………………………………………………….84
壹拾、附錄…………………………………………………………….85
李建興。1998。不同乳酸菌元對共軛亞麻油酸形成之影響。碩士論文。國立台灣大學畜產研究所。
岳佩瑩。1998。加工處理對雞蛋蛋黃抗體 (IgY) 安定性之影響。碩士論文。國立台灣大學畜產研究所。
曾國軒。1994。以生鮮蛋黃醃漬鹹蛋蛋黃之研究。碩士論文。國立台灣大學食品科技研究所。
Belury, M. A., K. P. Nickel, C. E. Bird, and Y. Wu. 1996. Conjugated
linoleic acid modulates hepatic lipid composition in mice. Lipids 32: 199-204.
Bernt, E., and I. Gutmann. 1974. Ethanol: determination with alcohol
dehydrogenase and NAD. In: H. U. Bergmeyer (Ed.). Methods of Enzymatic Analysis. 2nd ed. pp. 1499-1502. Verlag Chemie Weinheim/Academic Press, Inc., New York, San Francisco, and London.
Cesano, A., S. Visonneau, J. A. Scimeca, D. Kritchevsky, and D.
Santoli. 1998. Opposite effects of linoleic acid and conjugated linoleic acid on human prostatic cancer in SCID mice. Anticancer Res. 18: 833-838.
Chamruspollert, M., and J. L. Sell. 1999. Transfer of dietary conjugated
linoleic acid to egg yolks of chickens. Poultry Sci. 78: 1138-1150.
Chew, B. P., T. S. Wong, T. D. Shultz, and N. S. Magnuson. 1997. Effect
of conjugated dienoic derivatives of linoleic acid and b-Carotene in modulating lymphocyte and macrophage function. Anticancer Res. 17: 1099-1106.
Chen, C. A., and C. J. Sih. 1998. Chemoenzymatic synthesis of
conjugated linoleic acid. J. Org. Chem. 63: 9620-9621.
Chin, S. F., W. Liu, J. M. Storkson, Y. L. Ha, and M. W. Pariza. 1992.
Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J. Food Compos. Anal. 5: 185-197.
Chin, S. F., J. M. Strokson, K. J. Albright, M. E. Cook, and M. W.
Pariza. 1994. Conjugated linoleic acid is a growth factor for rats as show by enhanced weight gain and improved feed efficiency. J. Nutr. 124: 2344-2349.
Cook, M. E. 1996. Diet-induced immunosuppression. In: Poultry
Immunology. Davison TF, Morris TR, Payne LN, eds. Oxford: Carfax Publishing Company. pp. 317-325.
Cook, M. E., C. C. Miller, Y. Park, and M. W. Pariza. 1993. Immune
modulation by altered nutrient metabolism: nutritional control of immune-induced growth depression. Poultry Sci. 72: 1301-1305.
Cook, M. E., D. L. Jerome, T. D. Crenshaw, D. R. Buege, M. W. Pariza,
K. J. Albright, S. P. Schmidt, J. A. Scimeca, P. A. Lofgren, and E. J. Hentges. 1998. Feeding conjugated linoleic acid improves feed efficiency and reduce carcass fat in pigs. Fed. Am. Soc. Exp. Biol. J. 12: A836.
Cook, M. E., and M. W. Pariza. 1998. The role of conjugated linoleic
acid (CLA) in health. Int. Dairy J. 8: 459-462.
Cunningham, D. C., L. Y. Harrison, and T. D. Schultz. 1997.
Proliferative responses of normal human mammary and MCF-7 breast cancer cell to linoleic, conjugated linoleic and eicosanoid synthesis inhibitors in culture. Anticancer Res. 17: 197-204.
Deker, E. A. 1995. The role of phenolics, conjugated linoleic acid,
carnosine, and pyrroloquinoline quinone as nonessential dietary antioxidant. Nutr. Rev. 53: 49-58.
de Deckere, E. A. M., J. M. M. van Amelsvoort, G. P. McNeill, and P.
Jones. 1999. Effects of conjugated linoleic acid (CLA) isomers on lipid levels and peroxisome proliferation in the hamster. Br. J. Nutr. 82: 309-317.
Du, M., D. U. Ahn, and J. L. Sell. 1999. Effect of dietary conjugated
linoleic acid on the composition of egg yolk lipids. Poutry Sci. 78: 1639-1645.
Duan, M. E. R, J. S. Aalhus, A. L. Schaefer, and J. K. G. Kramer. 1997.
The effect of conjugated linoleic acid on fat to lean repartitioning and feed conversion in pigs. Can. J. Anim. Sci. 77: 723-725.
Durgan, V. R., and G. Fernandes. 1997. The growth inhibitory effect of
conjugated linoleic acid on MCF-7 cells is related to estrogen response system. Cancer Lett. 116: 121-130.
Farquharson, A., H. C. Wu, I. Grant, B. Graf, J. J. Choung, O. Eremin,
S. Heys, and K. Wahle. 1999. Possible mechanism for the putative antiatherogenic and antitumorigenic effects of conjugated polyenoic fatty acids. Lipids 34: S343.
Folch, J., M. Lees, and G. H. S. Stanley. 1959. A simple method for the
isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509.
Garcia-Lopez, S., E. Echeverria, I. Tsui, and B. Balch. 1994. Changes in
the content of conjugated linoleic acid (CLA) in processed cheese during processing. Food Res. Int. 27: 61-64.
Gavino, V. C., G. Gavino, M. J. Leblanc, and B. Tuchweber. 2000. An
isomer mixture of conjugated linoleic acids but not pure cis-9, trans-11-octadecadienoic acid affects body weightgain and plasma lipids in hamsters. J. Nutr. 130: 27-29.
Goldberg, A. L., Y. Baracos, P. Rodemann, L. Waxman, and C.
Dinarello. 1984. Control of protein degradation in muscle by prostaglandin, Ca2+, and leukocytic pryogen (interleukin-1). Fed. Proc. Exp. Biol. Med. 43: 1301-1306.
Griinari, J. M., B. A. Corl, S. H. Lacy, P. Y. Chouinard, K. V. V.
Nurmela, and D. E. Bauman. 2000. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by D9-desaturase. J. Nutr. 130: 2285-2291.
Griinari, J. M., and D. E. Bauman. 1999. Biosynthesis of conjugated
linoleic acid and its incorporation into meat and milk in ruminants. In: Yurawecz, M. P., M. M. Mossoba, J. K. G. Kramer, M. W. Priza, and G. J. Nelson, Eds. Advances in Conjugated Linoleic Acid Research, Vol. 1. pp. 180-200. AOCS Press, Champaign, IL.
Griinari, J. M., D. A. Dwyer, M. A. McGuire, D. E. Bauman, D. L.
Palmquist, and K.V. V. Nurmela. 1998. Trans-octadecenoic acids and milk fat depression in lactating dairy cows. J. Dairy Sci. 81: 1251-1261.
Hayek, M. G., S. N. Han, D. Wu, B. A. Watkins, M.Meydani, J. L.
Dorsey, D. E. Smith, and S. N. Meydani. 1999. Dietary conjugated linoleic acid influences the immune response of young and old C57BL/6NCrIBR mice. J. Nutr. 129: 32-8.
Ha, Y. L., N. K. Grimm, and M. W. Pariza. 1987. Anticarcinogens from
fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8: 1881-1887.
Ha, Y. L., N. K. Grimm, and M. W. Pariza. 1989. Newly recognized
anticarcinogenic fatty acids: Identification and quantification in natural and processed cheeses. J. Agric. Food Chem. 37: 75-81.
Ha, Y. L., J. Storkson, and M. W. Pariza. 1990. Inhibition of
benzo(a)pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res. 50: 1097-1101.
Harfoot, C. G., and G. P. Hazelwood. 1988. Lipid metabolism in the
rumen. In: Hobson et al., ed. The Rumen Microbial Ecosystem. pp. 285-322. Elsevier Science Publishers, London.
Ip, C., S. F. Chin, J. A. Scimeca, and M. W. Pariza. 1991. Mammary
cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res. 51:6118-6124.
Ip, C., M. Singh, H. J. Thompson, and J. A. Scimeca. 1994. Conjugated
linoleic acid suppresses mammary carcinogenesis and proliferative activity of mammary gland in the rat. Cancer Res. 54: 1212-1215.
Ip, C., J. A. Scimeca, and H. Thompson. 1995. Effect of timing and
duration of dietary conjugated linoleic acid on mammary cancer prevention. Nutr. Cancer 24: 241-247.
Ip, C., and J. A. Scimeca. 1997. Conjugated linoleic acid and linoleic
acid are distinctive modulators of mammary carcinogenesis. Nutr. Cancer 27: 131-5.
Jiang, J., L. Björck, and R. Fondén. 1998. Production of conjugated
linoleic acid by dairy starter cultures. J. Appl. Microbiol. 85: 95-102.
Jones, S., D. W. L. Ma, F. E. Robinson, C. J. Field, and M. T. Clandinin.
2000. Isomers of conjugated linoleic acid (CLA) are incorporated into egg yolk lipids by CLA-fed laying hens. J. Nutr. 130: 2002-2005.
Josyula, S., Y. H. He, R. T. Ruchs, and H. A. J. Schut. 1998. Inhibition
of DNA adduct formation of PhIP in female F344 rats by dietary conjugated linoleic acid. Nutr. Cancer 32: 132-138.
Josyula, S., and H. A. J. Schut. 1998. Effects of dietary conjugated
linoleic acid on DNA adduct formation of PhIP and IQ after bolus administration to female F344 rats. Nutr. Cancer 32: 139-145.
Kepler, C. R., K. P. Hirons, J. J. McNeill, and S. B. Tove. 1966.
Intermediates and products of the biohydrogennation of linoleic acid by butyrivibrio fibrisolvens. J. Biol. Chem. 241: 1350-1354.
Kritchevsky, D. 1999. Influence of conjugated linoleic acid (CLA) on
experimental atherosclerosis. Inform. 10: S42.
Lee, K. I., I. J. Yoo, and C. H. Kim. 1995. The effect of heating
condition on lactic acid fermentation of diluted liquid whole egg. Korea J. Anim. Sci. 37(3): 264-270.
Lee, K. N., D. Kritchevsky, and M. W. Pariza. 1994. Conjugated linoleic
acid and atherosclerosis in rabbits. Atherosclerosis 108: 19-25.
Li, Y., and B. A. Watkins. 1998. Conjugated linoleic alter bone fatty acid
composition and reduce ex vivo prostaglandin E2 biosynthesis in rats fed n-6 or n-3 fatty acid. Lipids 33: 417-25
Liew, C., H. A. J. Schut, S. F. Chin, M. W. Pariza, and R. H. Dashwood.
1995. Protection of conjugated linoleic acid against 2-amino-3-methylimidazo[4,5f] quinoline-induced colon carcinogenesis in the F344 rat: a study of inhibitory mechanisms. Carcinogenesis 16: 3037-3043.
Lin, T. Y. 2000. Conjugated linoleic acid concentration as affected by
lactic cultures and additives. Food Chem. 69: 27-31.
Lin, H., T. D. Boylston, L. O. Luedecke, and T. D. Shultz. 1998. Factors
Affecting the Conjugated Linoleic Acid Content of Cheddar Cheese. J. Agric. Food Chem. 46(3): 801-807.
Lin, T. Y., C. W. Lin, and C. H. Lee. 1999. Conjugated linoleic acid
concentration as affected by lactic cultures and added linoleic acid. Food Chem. 16: 1-5.
Liu, K. L., and M. A. Belury. 1997 Conjugated linoleic acid modulation
of phorbol ester-induced events in murine keratinocytes. Lipids 32: 725-30.
Macfaddin, J. F. 1985. Media for isolation cultivation identification
maintenance of medical bacteria. Volume 1. pp. 543-545. Williams and Wilkins, Baltimore, London.
Martin, J. C., S. Grégoire, M. F. Siess, M. Genty, J. M. Chardigny, O.
Berdeaux, P. Juanéda, and J. L. Sébédio. 2000. Effect of conjugated linoleic acid isomer on lipid-metabolizing enzymes in male rats. Lipids 35: 91-98.
Miller, C. C., Y. Park, M. W. Pariza, and M. E. Cook. 1994. Feeding
conjugated linoleic acid to animails partially overcomes catabolic responses due to endotoxin injection. Biochem. Biophys. Res. Commun. 198: 1107-1112.
Nugteren, D. H. 1970. Inhibition of prostaglandin biosynthesis by 8cis,
12trans, 14cis-eicosatrienoic acid and 5cis, 8cis, 12trans, 14cis- eicosatetraenoic acid. Biochim. Biophys. Acta 210: 171-176.
Ogawa, J., M. Kenji, K. Shigenobu, O. Yoriko, and S. Sakayu. 2001.
Conjugated linoleic acid accumulation via 10-hydroxy-12- octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl. Environ. Microbiol. 67(3): 1246-1252.
Pariza, M. W., S. H. Ashoor, F. S. Chu, and D. B. Lund. 1979. Effects of
temperature and time on mutagen formation in pan-fried hamburger. Cancer Lett. 7: 63-69.
Pariza, M. W., and W. A. Hargraves. 1985. A beef-derive mutagenesis
modulator inhibits of mouse epidermal tumours by 7,12- dimethylbenz(a)anthracene. Carcinogenesis 6: 591-593.
Pariza, M. W., P. Yeonhwa, and E. C. Mark. 2000. Mechanisms of
Action of Conjugated Linoleic Acid: Evidence and Speculation. Fed. Proc. Soc. Exp. Biol. Med. 223:8-13.
Park, Y., K. J. Albright, W. Liu, J. M. Storkson, M. E. Cook, and M. W.
Pariza. 1997. Effect of conjugated linoleic acid on body composition in mice. Lipids 32: 853-858.
Park, Y., K. J. Albright, J. M. Storkson, W. Liu, M. E. and Cook, M. W.
Pariza. 1999. Change in body composition in mice during feeding and withdrawl of conjugated linoleic acid. Lipids 34: 243-248.
Park, Y., K. J. Albright, Z. Y. Cai, and M. W. Pariza. 2001. Comparison
of methylation procedures for conjugated linoleic acid and artifact formation by commercial (trimethylsilyl) diazomethane. J. Agric. Food Chem. 49: 1158-1164.
Park, Y., J. M. Storkson, K. J. Albright, W. Kiu, and M. W. Pariza. 1999.
Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34:235-241.
Sakono, M., F. Miyanaga, S. Kawahara, K. Yamauchi, N. Fukuda , K.
Watanabe, T. Iwata, and M. Sugano. 1999. Dietary conjugated linoleic acid reciprocally modifies ketogenesis and lipid secretion by the rat liver. Lipids 34: 997-1000.
Sakono, M., F. Miyanaga, S. Kawahara, K. Yamauchi, N. Fukuda, K.
Watanabe, T. Iwata, and M. Sugano. 1999. Dietary conjugated linoleic acid reciprocally modifies ketogenesis and lipid secretion by the rat liver. Lipids 34: 997-1000.
Snatora, J. E., D. L. Palmquist, and K. L. Roehrig. 2000. Trans-vaccenic
acid is desaturated to conjugated linoleic acid in mice. J. Nutr. 130: 208-215.
Satory, D., and S. Smith. 1999. Conjugated linoleic acid inhibits
proliferation but stimulates lipid filling of murine 3T3-L1 preadipocytes. J. Nutr. 129: 92-97.
Schultz, T. D., B. P. Chew, and W. R. Seaman. 1992a. Differential
stimulatory and inhibitory responses of human MCF-7 breast cancer cells to linoleic acid and conjugated linoleic acid in culture. Anticancer Res. 12: 2143-2146.
Schultz, T. D., B. P. Chew, W. R. Seaman, and L. O. Luedecke. 1992b.
Inhibitory effect of conjugated dienoic derivatives of linoleic acid and b-carotene on the in vitro growth of human cancer cells. Cancer Lett. 63: 125-133.
Schut, H. A. J., D. A. Cummings, H. H. E. Smale, S. Josyula, and M. D.
Friesen. 1997. DNA adducts of heterocyclic amines: formation, removal and inhibition by dietary component. Mutation Res. 376: 185-194.
Shantha, N. C., E. A. Decker, and B. Hennig 1993. Comparison of
methylation method for the quantitation of conjugated linoleic acid isomers. J. of AOAC Int. 76(3): 644-649.
Shantha, N. C., E. A. Decker, and Z. Ustunol. 1992. Conjugated linoleic
acid concentration in processed cheese. J. Am. Oil Chem. Soc. 69: 425-428.
Shantha, N. C., L. N. Ram, J. O’Leary, C. L. Hicks, and E. A. Decker.
1995. Conjugated linoleic acid concentrations in dairy products as affected by processing and storage. J. Food Sci. 60: 695-697.
Stangl, G. I. 2000. Conjugated linoleic acid exhibit a strong fat-to-lean
partitioning effect, reduce serum VLDL lipids and redistribute tissue lipids in food-restricted rats. J. Nutr. 130: 1140-1146.
Sugano, M., A. Tsujita, M. Yamasaki, K. Yamada, I. Ikeda, and D.
Kritchevsky. 1997. Lymphatic recovery, tissue distribution, and metabolic effects of conjugated linoleic acid in rats. J. Nutr. Biochem. 8: 38-43.
Visonneau, S., A. Cesano, S. A. Tepper, J. A. Scimeca, D. Santoli, and
D. Kritchevsky. 1997. Conjugated linoleic acid suppresses the growth of human breast adenocarcinoma cells in SCID mice. Anticancer Res. 17: 969-974.
Werner, S. A., L. O. Luedecke, and T. D. Shultz. 1992. Determination of
conjugated linoleic acid content and isomer distribution in three Cheddar-type cheeses: Effect of culture, processing, and aging. J. Agric. Food Chem. 40: 1871-1821.
Whigham, L. D., E. B. Cook, J. L. Stahl, R. Saban, M. W. Pariza, and
M. E. Cook. 1998. Conjugated linoleic acid reduced antigen- induced prostaglandin E2 release from sensitized tracheas. Fed. Am. Soc. Exp. Biol. J. 12: A819.
Whigham, L., A. Higbee, D. Bjorling, M. W. Pariza, and M. E. Cook.
2000. Dietary conjugated linoleic acid decreases antigen-induced release of lipid-derived mediators in guinea pig airways. Fed. Am. Soc. Exp. Biol. J. 14: A728.
Whigham, L. D., M. E. Cook, and R. L. Atkinson. 2000. Conjugated
linoleic acid: implications for human health. Pharmacol. Res. 42(6): 503-510.
Wong, M. W., B. P. Chew, T. S. Wong, H. L. Hosick, T. D. Boylston,
and T. D. Shultz. 1997. Effects of dietary conjugated linoleic acid on lymphocyte function and growth of mammary tumors in mice. Anticancer Res. 17: 987-994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔