(3.238.186.43) 您好!臺灣時間:2021/02/28 14:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王相華
研究生(外文):Hsiang-Hua Wang
論文名稱:植群構造及植物組成在不同微地貌及更新棲位的變化-以北台灣福山試驗林陡峭林地為例
論文名稱(外文):Variation in Vegetation Structure and Composition in Different Micro-landforms and Regeneration Niches of a Steep Forest Plot in the Fushan Experimental Forest, Northern Taiwan
指導教授:蘇鴻傑蘇鴻傑引用關係
指導教授(外文):Horng-Jye Su
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:森林學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:85
中文關鍵詞:微地貌更新棲位枯死木植群構造植物組成物種多樣性土壤干擾
外文關鍵詞:micro-landformregeneration nichedead treevegetation structurespecies compositionspecies diversitysoil disturbance
相關次數:
  • 被引用被引用:5
  • 點閱點閱:300
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
植群構造及植物組成在不同微地貌及更新棲位的變化
-以北台灣福山試驗林陡峭林地為例
中文摘要
本研究探討植群構造、組成與微地貌及更新棲位間的相關性。研究地點為台灣北部福山試驗林的一塊2 ha常綠闊葉林,該樣區地勢陡峭,跨越頂坡及溪谷,包含不同微地貌及更新棲位。樣區劃分為7種微地貌(頂坡、上坡、下坡、山腳-溪谷、平緩山溝、陡峭山溝及崩塌地)及3種更新棲位(低孔隙、高孔隙及冠層鬱閉區),並進一步比較植群構造(以枝葉層垂直結構、平均冠層高、林木胸高斷面積及密度為代表)及孔隙分布在不同微地貌的變化,以及樹種對不同微地貌及更新棲位之適應性。
調查結果指出,不同微地貌之植群構造有顯著差異。頂坡及上坡的有效土壤較深、坡度較為平緩﹔相較於其它微地貌,其林分發育良好,有較高的平均冠層高度,林木胸高斷面積及密度也較大。相反的,孔隙則集中在有效土壤淺薄,容易受到沖蝕之陡峭山溝及山腳-溪谷。崩塌地尚處於林分發育初期之孔隙階段。頂坡及上坡有較高比例的立枯木分布,幹折及根拔林木的分布則無明顯的集中現象。邊坡的穩定性及地表沖蝕所造成的土壤干擾,是影響山區森林結構分化及孔隙分布的重要因子。
樣區內紀錄有99個樹種,多數樹種出現位置與微地貌(92種)或更新棲位(76種)有顯著關聯性;其中稀少種較常見於下坡、山腳-溪谷、陡峭山溝及崩塌地微地貌或孔隙棲位,且多數屬於需光性高之陽性植物;相反的,常見種多生長在干擾度小的頂坡、上坡微地貌,或冠層鬱閉區。與常態對數分布曲線比較,樣區內稀少種之數量明顯偏高,增加了樣區內之樹種多樣性,且上述稀少種多偏好生長在樣區內相對面積較小的易受干擾微地貌,或孔隙棲位。依據不同生活階段的更新棲位適應性,可將17個冠層優勢樹種分為4個類群,大多數冠層優勢種在稚樹階段經常生長在冠層鬱閉區,在幼樹階段則趨向沒有明顯的更新棲位選擇性;部分樹種在不同生活階段對棲位的適應性會有所轉變。
頂坡及山腳-溪谷微地貌組合樣區間的定量物種轉換率為77.7%,低孔隙及冠層鬱閉區間的定量物種轉換率為34.9%;相對而言,微地貌分化對物種β多樣性的貢獻較更新棲位的分化顯著。綜合言之,在陡峭的山區內,微地貌及更新棲位之分化,是造成植群構造及植物組成分化的重要因子,亦是物種多樣性在小面積森林中維持的重要機制。
Variation in Vegetation Structure and Composition in Different
Micro-landforms and Regeneration Niches of a Steep Forest Plot
in the Fushan Experimental Forest, Northern Taiwan
Summary
The variation of vegetation structure and composition among micro-landforms and regeneration niches were examined in a 2-ha plot established on a slope extending from the mountain crest to bottomland in an evergreen broadleaf forest in the Fushan Experimental Forest, northern Taiwan. Seven micro-landforms (crest, upper slope, lower slope, foot slope-bottomland, smooth gully, steep gully, and landslide) and 3 regeneration niches (low-gap, high-gap, closed canopy) were recognized in this plot. Vegetation structure (represented by vegetation height profile, average canopy height, basal area of woody plants, and density of woody plants) and areas of gaps were compared among different micro-landforms. The chi-square test was used for demonstrating the association of certain species with different micro-landforms or regeneration niches.
There was significant difference in vegetation structure among micro-landforms. The vegetation developed better (higher average canopy height, larger basal area and density of woody plants) on the crest and upper slope where the effective soil was deeper and the inclination was flatter. In contrast, there were greater areas of canopy gaps recorded in the steep gully, foot slope-bottomlands and landslide patches where the effective soil was shallower due to soil erosion. Standing dead trees tend to aggregate on the crest and upper slope, while snapped and uprooted trees show no obvious aggregation. In conclusion, the regime of soil disturbance is the predominant factor influencing the vegetation structure and distribution of canopy gaps among different micro-landforms.
Ninety-nine woody species were recorded in 2 ha plot, and most of them significantly adapted to certain micro-landform (92 species) or regeneration niche (76 species). Many rare species tend to appear in the gap and/or micro-landform with frequent soil disturbance, such as lower slope, foot slope-bottomland, steep gully and landslide; and most of them are shade-intolerant. In contrast, common species often appear in closed canopy patch and/or the micro-landform with slight soil disturbance, such as crest and upper slope; and most of them are shade-tolerance species. There are more rare species in 2 ha plot while fitting to the lognormal distribution curve, and many rare species are shade-intolerant. Many rare species occurred in micro-landforms and/or gaps in which the soil is frequently disturbed. As a result, the α diversity in the plot is increased.
According to the regeneration niche selection among life stages, canopy tree (17 species) could be grouped into 4 categories. At sapling stage (dbh< 5 cm), most of canopy species (11 species) tend to exist in area of closed canopy; at young tree stage(5 cm≦dbh≦20 cm), most of canopy species (10 species) are evenly distribute among 3 regeneration niches. The regeneration niche adaptation may be modified at different life stages for some canopy species.
The species turnover rate between crest and foot slope-bottomland is 77.7%, which is much higher than that between low-gap and closed canopy. Therefore, the differentiation of micro-landform contributes more to β diversity than that of regeneration niche. In conclusion, micro-landform and regeneration niche differentiation is important mechanism for maintaining woody species diversity at local scale.
目 錄
附表目次 ………………………………………………………….....Ⅰ
附圖目次 ………………………………………………………….....Ⅱ
中文摘要 ………………………………………………………….....Ⅲ
英文摘要 ………………………………………………………….....Ⅴ
壹、緒言 ……………………………………………………………...1
貳、前人研究…………………………………………………………..3
參、材料與方法………………………………………………………..6
一、試驗地概述…………………………….………………….......6
二、調查方法………………………………….………………….....8
(一) 樣區測量及微地貌分類 ……………..……………….……...8
(二) 植物調查 ………………………………………………….....10
(三) 環境因子及林相因子之調查、評估 …………………….....11
(四) 植群高度剖面結構及更新棲位的標定方法 …………….....12
三、樣區資料建檔及分析方法 …………………………………....13
(一) 植物調查原始資料檔建立 ……………………………….....13
(二) 不同密度等級之物種豐富度 …………………………….....13
(三) 樹種α及β多樣性計算方式……….………………….......14
(四) 不同微地貌區塊的環境及林相因子比較……….…….......15
(五) 枯死木數量及孔隙在不同微地貌區塊的分布 ….……......16
(六) 樹種對微地貌及更新棲位偏好之分析方法 …..…..……...16
肆、結果……………………………………………………………...17
一、 微地貌的劃分…………………………….……………….....17
二、 植群高度剖面結構…………………………………..………..17
(一) 全區植群高度剖面結構 ………………..…………….......17
(二) 不同微地貌區塊之植群高度剖面結構……….…….........19
三、孔隙分布 ………………………………………………........20
四、枯死木分布 ……………………………………………........23
五、不同微地貌區塊的環境及林相因子………………….........24
(一) 環境因子 …………………………………………….........24
(二) 林相因子 …………………………………………….........25
(三) 環境及林相因子間的相關性 ……………………...........26
六、樣區植物組成及不同密度等級物種之豐富度 ………………..27
七、微地貌及更新棲位之物種多樣性 …………………………....31
(一) 不同微地貌及更新棲位的物種α多樣性 ………………...31
(二) 不同微地貌及更新棲位之物種β多樣性 ………………...33
八、 物種對不同微地貌及更新棲位之適應性 …………………….35
九、 優勢樹種在不同生活階段的更新棲位適應性 ……………….49
伍、討論 …………………………………………………..........51
一、植群構造的變化 ……………………………..……………....51
二、孔隙與枯死木的分布 ………………………….………….....54
三、樹種的微生育地適應性 ………………………………………..56
四、優勢種不同生活階段的更新棲位適應性……………………….58
五、微生育地分化對物種多樣性之影響 …………..………………60
陸、結論 …………………………………….……………….......65
柒、引用文獻 ………………………………………………........67
附錄 1. 樣區植物名錄 …………………………………………....74
附錄 2. 調查樣區內不同更新棲位組合樣區之物種組成 ………..79
附錄 3. 調查樣區內不同微地貌組合樣區之物種組成 …………..82
附表目次
表 1. 三種更新棲位對不同微地貌適應性之卡方檢驗結果 ……….22
表 2. 枯死木(胸徑≧20 cm)對不同微地貌適應性之卡方檢驗結果.24
表 3. 不同微地貌區塊之環境及林相因子之變異數分析及鄧肯多
變域分析比較 ………………………………………………...25
表 4. 樣區環境及林相因子間之相關性比較 ……………………….26
表 5. 樣區紀錄物種之相對密度、相對優勢度及重要值 ………….28
表 6. 不同微地貌區塊內紀錄之植物種數及Shannon多樣性指數 ..32
表 7. 不同更新棲位出現之植物種數及Shannon多樣性指數 ……..32
表 8. 不同微地貌區塊間之物種組成相異性(物種轉換率) ……….35
表 9. 不同更新棲位間之物種組成相異性(物種轉換率) ………….35
表 10. 樣區木本植物對不同微地貌適應性之卡方檢驗結果 ……..38
表 11. 樣區木本植物對不同更新棲位適應性之卡方檢驗結果 …..42
表 12. 優勢種在不同生活階段對更新棲位適應性的卡方檢驗結果.50
表 13. 台灣東北內陸區(northeast inland region)楠櫧林帶之
植群調查結果比較 ……………………………………………64
附圖目次
圖 1. 永久樣區於福山試驗林之設置地點 …………………………8
圖 2. 坡面微地貌之分類方式(仿Hara et al. 1996) ………… 10
圖 3. 微地貌在調查樣區之分布 …………………………………..18
圖 4. 全樣區之植群剖面結構 ………………………………………19
圖 5. 七個微地貌區塊之植群剖面結構 ……………………………20
圖 6. 三種更新棲位在調查樣區之分布 ……………………………21
圖 7. 樣區木本植物在不同對數密度等級之分布頻度 ……………31
圖 8. 七種不同微地貌區塊組合樣區在DCA第1及第2軸之分布....33
圖 9. 不同密度樹種在不同更新棲位之實測值與期望值差異之卡
方檢驗………………………………………………………….46
圖 10. 不同密度樹種在不同微地貌之實測值與期望值差異之卡
方檢驗...………………………………………………….…47
圖 11. 樣區喬木(成熟植株胸徑>5cm)種類在不同對數密度等級
之分布頻度 ………………………………………………….62
王立志,1987。台灣北部烏來地區天然植群之多變數分析,國立台灣大學森林學研究所碩士論文,88頁。
王相華、郭耀綸、潘順勇,1997。墾丁高位珊瑚礁森林樹冠疏開對二十種樹木種子發芽的影響。台灣林業科學12(3): 299-307。
王相華、潘富俊、劉景國、于幼新、洪聖峰,2000。台灣北部福山試驗林永久樣區之植物社會分類及梯度分析,台灣林業科學15(3): 411-428。
吳珊華,1998。南仁山亞熱帶雨林短期森林動態之研究。國立台灣大學植物學研究所碩士論文,161頁。
周順軍,1995。台灣北部福山地區低海拔闊葉森林地被植物及樹種小苗分布類型之研究。國立台灣大學植物學研究所碩士論文,97頁。
林光清、洪富文、程煒兒、蔣先覺、張雲翔,1996。福山試驗林土壤調查與分類。台灣林業科學1(2): 159-174。
林務局,1995。第三次台灣森林資源及土地利用調查。258頁。
林業試驗所,1989。福山試驗林原生植物名錄。林業試驗所林業叢刊第29號。31頁。
邵顯涵,1997。哈盆溪集水區泥沙生產之觀測。台灣大學地理研究所碩士論文。83頁。
張和明,1996。台灣北部福山天然闊葉林土壤種子庫與樹種更新之研究。國立台灣大學植物學研究所碩士論文,76頁。
張藝翰,1998。台灣北部福山地區蕨類植物之分布與環境因子之關係探討,並以蕨類植物作為環境指標之研究。台灣大學植物學研究所碩士論文。117頁。
曾維宏,1994。南仁山區低海拔亞熱帶雨林林隙更新之研究。台灣大學植物學研究所碩士論文。102頁。
楊嘉政,1994。南仁山區熱帶季節性森林的結構、組成及分布類型。國立台灣大學植物學研究所碩士論文,63頁。
謝宗欣、謝長富,1990。南仁山亞熱帶森林樹種組成和分布類型。台灣省立博物館年刊 33: 121-146。
關秉宗,1984。台灣北部鹿角溪集水區森林植群多變數分析法之比較研究。台灣大學森林研究所碩士論文。88頁。
蘇鴻傑,1977。臺灣北部烏來一小集水區闊葉樹林群落生態之研究〈二〉地形與樹木分布型式及其取樣方法之關係,台大實驗林研究報告119: 201-215。
蘇鴻傑,1987。植群多變數分析法之研究Ⅲ. 降趨對應分析及相關分布序列法。中華林學季刊 20(3): 45-68。
蘇鴻傑、林則桐,1979。木柵地區天然植群之地陣群團分析及分布序列。台大實驗林研究報告 124: 187-210。
Ashton, P. S. and Hall, P. 1992. Comparisons of structure among mixed dipterocarp forests of north-western Borneo. J. Ecol. 80: 459-481.
Ashton, P. S. 1964. Ecological studies in mixed dipterocarp forests of Brunei State. Oxford Forestry Memoir 25. Oxford, Oxford Univ. 34 p.
Basnet, K. 1992. Effect of topography on the pattern of trees in tabonuco dominated rain forest of Puerto Rico. Biotropica 24(1): 31-42.
Bray, J. R. and Curtis, J.T. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol. Monog. 27: 325-349.
Brokaw, N. V. 1985. Treefalls, regrowth, and community structure in tropical forests. In: Pickell TA, White PS, editors. The Ecology of Natural Disturbance and Patch Dynamics. p 53-69. Academic Press, New York, NY.
Brokaw, N. V. 1991. Forest structure before and after hurricane Hugo at three elevations in the Luquillo Mountains, Puerto Rico. Biotropica 23(4a): 386-392.
Brubaker, S. C., Jones, A. J., Lewis, D. T. and Frank, K. 1993. Soil properties associated with landscape position. Soil. Sci. Soc. Am. J. 57: 235-239.
Canham, C. D. 1989. Different responses to gaps among shade-toletant tree species. Ecology 70: 548-550.
Chen, Z. S., Hsieh, C. F., Jiang, F. Y., Hsieh, T. H. and Sun, I. F. 1997. Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecol. 132 :229-241.
Clark, D. A. and Clark, D. B. 1992. Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecol. Monog. 62(3): 315-344.
Clark, D. A., Clark, D. B., Sandoval, M. R. and Castro, C. M. V. 1995. Edaphic and human effects on landscape-scale distributions of tropical rain forest palms. Ecology 76: 2581-2594.
Clark, D. B., Clark, D. A. and Read, J. M. 1998. Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. J. Ecol. 86: 101-112.
Clark, D. B., Clark, D. A. and Rich, P. M. 1993. Comparative analysis of microhabitat utilization by saplings of nine tree species in neotropical rain forest. Biotropica 25: 397-407.
Connell, J. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302-1310.
Cordit, R., Hubbell, S. P. and Foster, R. B. 1992. Recruitment near conspecific adults and the maintenance of tree and shurb diversity in a neotropical forest. Am. Nat. 140: 261-286.
Denslow, J. S. 1987. Tropical rainforest gaps and tree species diversity. Ann. Rev. Ecol. Syst. 18:431-451.
Enoki, T., Kawaguchi, H. and Iwatsubo, G. 1996. Topographic variations of soil properties and stand structure in a Pinus thunbergii plantation. Ecol. Res. 11:299-309.
Gale, N. and Barfod, A. S. 1999. Canopy tree mode of death in a western Ecuadorian rain forest. J. Trop. Ecol. 15:415-436.
Gale, N. 2000. The relationship between canopy gaps and topography in a Western Ecuadorian rain forest. Biotropica 32(4a): 653-661.
Garten, C. T. Jr., Huston, M. A. and Thoms, C. A. 1994. Topographic variation of soil nitrogen dynamics at Walker Branch Watershed, Tennessee. For. Sci. 40: 497-512.
Garwood, N. C., Janos, D. P. and Brokaw, N. 1979. Earthquake-caused landslides in Panama: a major disturbance to tropical forests. Science 205: 997-999.
Garwood, N. C. 1983. Seed germination in a seasonal tropical forest in Panama: a community study. Ecol. Monog. 53: 159-181.
Garwood, N. C. 1989. Tropical soil seed banks: a review. In: Leck MA, Parker VT, Simpson RL, editors. Ecology of Soil Seed Banks. p 149-209. Academic Press. San Diago, CA.
Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Misso. Bot. Gar. 75: 1-34.
Grubb, P. J. 1977. The maintenance of species richness in plant communities: The importance of the regeneration niche. Biol. Rev. 52: 107-145.
Grubb, P. J.. 1996. Rainforest dynamics: the need for new paradigms. In: Edwards DS, Booth WE, Choy SC, editors. Tropical Rainforest Research - Current Issues. Vol. 74. Monography Biology, p215-233. Kluwer Academic Publishers, Dordrecht, the Netherlands.
Guariguata, M. R. 1990. Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico. J. Ecol. 78: 814-832.
Hara, M., Hirata, K., Fujihara, M. and Oono, K. 1996. Vegetation structure in relation to micro-landform in an evergreen broad-leaved forest on Amami Ohshima Island, south-west Japan. Ecol. Res. 11: 325-337.
Hill, M. O. 1979b. DECORANA- A FORTRAN program for detrended correspondence analysis and reciprocal averaging. New York: Cornell University. 52 p.
Holdridge, L. R. 1967. Life zone ecology. San Jose: Tropical Science Center. 54 p.
Holdridge, L. R. 1972. Forest environments in tropical life zones: A pilot study. New York: Pergamon Press. 73 p.
Hsieh, C. F, Chen, Z. S., Hsu, Y. M., Yang, K. C. and Hsieh, T. H. 1998. Altitudinal zonation of evergreen broad-leaved forest on Mount Lopei, Taiwan. J. Veg. Sci. 9: 201-212.
Hubbell, S.P. 1979. Tree Dispersion, Abundance, and Diversity in a Tropical Dry For. Sci. 203: 1299-1309.
Hubbell, S. P. and Foster, R. B. 1983. Diversity of canopy trees of a neotropical forest and implications for conservation. In: Sutton SJ, Whitmore TC, Chadwick AC, editors. Tropical Rain Forest : Ecology and Management, p25-41. Blackwell Scientific, Oxford, England.
Hubbell, S.P. and Foster, R. B. 1986a. Canopy gaps and the dynamics of a neotropical forest. In: Crawley MJ, editor. Plant Ecology. p 77-96.Oxford. Blackwell Scientific.
Hubbell, S. P. and Foster, R. B. 1986b. Commonness and rarity in a neo tropical forest: implications for tropical tree conservation. In: Soule ME, editor, Conservation Biology: the Science of Scarcity and Diversity, p 205-231. Sinauer Associates, Sunderland, MA.
Hubbell, S. P. and Foster, R. B. 1986c. Biology, chance, histoty and the structure of tropical rain forest tree communities. In: Diomond J, Case TJ, editors. Community Ecology, p314-329. Harper & Row Press, New York, NY.
Janzen, D. H. 1970. Herbivores and the numbers of tree species in tropical forests. Am. Nat. 104: 501-528.
Johnston, M. H. 1992. Soil-vegetation relationships in a tabonuco forest community in the Luquillo Mountains of Puerto Rico. J. Trop. Ecol. 8: 253-263.
Kapos, V., Pallant, E., Bien, A. and Freskos, S. 1990. Gap frequencies in lowland rain forest sites on contrasting soils in Amazonian Ecuador. Biotropica 22: 218-225.
Klinge, H., Rodrigues, W. A., Brunig, E. and Fittkau, E. J. 1975. Biomass and structure in a Central Amazonian forest. Ch. 9 Ecological Studies, Vol. 2, Tropical Ecological Systems. In: Golley FB, Medina E, editors. Trends in Terrestrial and Aquatic Research. p. 115-122. Springer-Verlag, Berlin.
Kohyama, T. 1996. The role of architecture in enhancing plant species diversity. In: Abe T, Levin A, Higashi M, editors. Biodiversity: An Ecological Perspective. p.21-33. New York: Springer-Verlag Inc. 294p.
Krasny, M. E. and Whitmore, M. C. 1992. Gradual and sudden forest canopy gaps in Allegheny northern hardwood forests. Can J For Res 22: 139-143.
Lugo, A. E. 1988. Diversity of the tropical species. Biological International. Special issue-19. Paris, France: IVBS.
May, R. M. 1975. Patterns of species abundance and diversity. In: Cody ML, Diomond JM, editors. Ecology and Evolution of Communities, p. 81-120. Belnap Press, Cambridge, MA.
May, R. M. 1981. Patterns in multi-species communities. In: May RM, editor. Theoretical Ecology. Sinauer Assoc., Sunderland, MA. p 197-227.
McCune, B. and Mefford, M. J. 1999. PC-ORD. Multivariate analysis of ecological data, vers. 4. Gleneden Beach, OR: MjM Software Design.
Oldeman, R. A. 1978. Architecture and energy exchange of dicotyledonous trees in the forest. In: Tomlinson PB, Zimmermann MH, editors. Tropical Trees as a Living Systems. Cambridge: Cambridge Univ. Press. p 535-560.
Poorter, L., Jans, L., Bongers, F. and Van Rompaey, R. S. A. R. 1994. Spatial distribution of gaps along three catenas in the moist forest of Tai National Park, Ivory Coast. J. Trop. Ecol. 10: 385-398.
Poulsen, A. D. 1996. Species richness and density of ground herbs within a plot of lowland rainforest in north-west Borneo. J. Trop. Ecol. 12: 177-190.
Richards, P. W. 1980. The three-dimensional structure of tropical rain forest. In: Sutton SL, Whitmore TC, Chadwick AC, editors. Tropical Rain forest: Ecology and Management. p. 3-10. Oxford: Blackwell Scientific Publication. 498p.
Sakai, A. and Ohsawa, M. 1993. Vegetation pattern and microtopograph on a landslide scar of Mt. Kiyosumi, central Japan. Ecol. Res. 8: 47-56.
Shannon, C. E. and Weaver, W. 1963. The Mathematically Theory of Communication. University Illinois Press, Urbana, IL. 117 p.
Sollins, P., Sancho, M. F., MATA, ChR. and Sanford, R. L. Jr. 1994. Soil and soil process research. In: McDate LA, Bawa KS, Hespenheide HA, Hartshorn GS, editors. La Selva: Ecology and Natural History of a Neotropical Rain Forest. p 34-53. University of Chicago, MI.
Sterner, R.W., Ribic, C.A. and Schatz, G.E. 1986. Testing for life historical changes in spatial patterns of four tropical tree species. J. Ecol. 74: 621-633.
Su, H. J. 1985. Studies on the climate and vegetation types of natural forest in Taiwan. (Ⅲ) A scheme of geographical climatic regions.Q. J. Chin. For. 18(3): 33-44.
Su, H. J. 1994. Species diversity of forest plants in Taiwan. In: Peng CI, Chou CH, editors. Biodiversity and Terrestrial Ecosystems.,p 87-98. Institute of Botany, Academic Sinica Monograph Series No.14, Taipei, Taiwan.
Sugihara, G. 1980. Minimal community structure: An explanation of species abundance patterns. Am. Nat. 116: 770-787.
Swaine, M. D. and Whitmore, T. C. 1988. On the definition of ecological species groups in tropical rain forests. Vegetatio 75: 81-86.
Tamura, T. 1969. A series of micro-landform units composing bottomland heads in the hills near Sendai. Sci. Rep. Tohoku Univ. 7th Series (Geography) 19: 111-127.
Tamura, T. 1974. Micro-landform units composing a bottomland-head area and their geomorphic significance. Ann. Tohoku Geogr. Assoc. 26: 189-199. [in Japanese].
Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75: 2-16.
Tuomisto, H., Ruokolainen, K., Kalliola, R., Linna, A., Danjoy, W. and Rodriguez, Z. 1995. Dissecting Amazonian Biodiversity. Science 269: 63-66.
Tuomisto, H. and Ruokolainen, K. 1993. Distribution of Pteridophyta and Melastomataceae along and edaphic gradient in an Amazonian rain forest. J. Veg. Sci. 4: 25-34.
Valencia, R., Balslev, H., Pazy, M. C. and Pazy, M. G. 1994. High tree alpha-diversity in Amazonnian Ecuador. Biodiv. and Conserv. 3: 21-28.
Veblen, T. T. and Sahton, D. H. 1978. Tree regeneration responses to gaps along a transandean gradient. Ecology 70: 541-543.
Welden, C. W., Hewett, S. W., Hubbell, S. P. and Foster, R.B. 1991. Sapling Survival, Growth, and Recruitment: Relationship to canopy height in a neotropical forest. Ecology 72(1): 35-50.
White, H. H. Jr. 1963. Variation of stand structure correlated with altitude in the Luquillo Mountains. Carib. For. 24: 46-52.
Whitmore, T. C. 1984. Tropical rain forest of the Far-East. 2nd edition. Oxford: Clarendon Press.
Whitmore, T. C. 1989. Canopy gaps and two major groups of forest trees. Ecology 70(3): 536-538.
Whittaker, R. H. 1965. Dominance and diversity in land plant communities. Science 147: 250-260.
Yoshida, N. and Ohsawa, M. 1996. Differentiation and maintenance of topo-community patterns with regeneration dynamics in mixed cool temperate forests in the Chichiba Mountains, central Japan. Ecol. Res. 11: 351-62.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔