(54.236.58.220) 您好!臺灣時間:2021/03/09 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江殷儒
研究生(外文):Chiang, Yin-Ru
論文名稱:鯉魚潭中葡萄藻代謝物質之生物毒性
論文名稱(外文):The biotoxicity of metabolites of Botryococcus braunii from Lake Li-Yu
指導教授:吳俊宗
指導教授(外文):Wu, Jiunn-Tzong
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:葡萄藻自由態脂肪酸藻類浮游動物化學生態學相剋作用
外文關鍵詞:Botryococcus brauniifree fatty acidsalgaezooplanktonchemical ecologyallelopathy
相關次數:
  • 被引用被引用:4
  • 點閱點閱:310
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
面積約100公頃的鯉魚潭為花蓮縣最大湖泊,經複合參數指標判定水質長期屬於輕度優養狀態。鯉魚潭於1993、1996及1999年秋冬季皆曾發生嚴重的葡萄藻華,期間並伴隨吳郭魚大量死亡的現象。為評估葡萄藻華對該水域生態系統的影響,故對葡萄藻的生物毒性進行研究。以葡萄藻粗萃取物對分離自鯉魚潭的十五株藻種進行毒性測試,結果顯示除了Microcystis flos-aquae及Oocystis parva,其餘十三株藻種皆表現程度不一的敏感度。對鯉魚潭浮游藻群落的分析結果顯示,藻種對葡萄藻的敏感度與其在葡萄藻華期間所佔有的相對優勢度,呈現密切相關。本研究亦使用葡萄藻粗萃取物對鯉魚潭的優勢浮游動物進行毒性測試,結果顯示佔有浮游動物群落60 %以上組成的橈足類較枝角類敏感得多。前述測試結果顯示,葡萄藻可能藉由相剋物質的作用,對鯉魚潭的浮游生物群落造成影響。
批次培養結果顯示,在磷或氮源成為限制因子而細胞進入指數生長末期時,葡萄藻能產生並釋出大量的毒性物質。此時期的培養液之營養鹽濃度與葡萄藻華時期的鯉魚潭水質條件最為接近,顯示該水域提供適當的化學環境,使葡萄藻能生長良好並藉由相剋作用與其它藻類競爭。
葡萄藻毒性物質溶於有機溶劑中,經薄層層析、高效液相層析等技術進一步分離及純化,並以核磁共振及質譜等技術鑑定結構後,確認為包括棕櫚酸 (16:0)、油酸 (18:1ω9)、亞麻油酸 (18:2ω6)及α-亞麻脂酸 (18:3ω3)在內的數種自由態脂肪酸。其中,三種18碳不飽和脂肪酸對多數測試藻株及甲殼綱浮游動物具有明顯毒性,半抑制濃度EC50 (或LC50)約在10-20μg‧mL-1之間。葡萄藻的總自由態脂肪酸含量佔細胞乾重的2.25%左右,遠高於其它七個分屬藍綠菌、綠藻及渦鞭毛藻門的測試藻種。
葡萄藻粗萃取物及其主要脂肪酸經由阻斷電子傳遞鏈,而能抑制藻細胞的光合作用,對呼吸作用則皆無明顯影響。三種18碳不飽和脂肪酸在低於明顯抑制光合作用的施加劑量下,即可造成藻細胞的死亡;而DCMU在完全抑制光合作用的高劑量下,卻不會在24小時內造成藻細胞死亡。顯示對光合作用的抑制並非葡萄藻對其它藻類的關鍵致毒機制。
三種18碳不飽和脂肪酸在施加三十分鐘內會造成藻細胞5-10%鉀離子滲漏,並在測試的四小時內持續增加。進一步的研究顯示,此些18碳不飽和脂肪酸會對藻細胞膜上的P型ATPase造成抑制,對V型及F型ATPase則無明顯影響。由於P型ATPase (尤其是H+-ATPase)為藻細胞維持膜電位的最重要酵素,不飽和脂肪酸造成藻細胞之鉀離子滲漏可能與P型ATPase受抑制有關。另一方面,葡萄藻粗萃取物及其主要脂肪酸亦會對枝角類及橈足類的Na+/K+-ATPase產生專一性抑制;而對F型及V型ATPase,甚至其它P型ATPase皆無任何抑制效果。顯示葡萄藻毒性物質可能經由抑制Na+/K+-ATPase活性,導致浮游動物因滲透壓失衡而死亡。
With a surface area of ca. 100 ha, the Lake Li-Yu is the largest lake in Hwa-Lian county, Taiwan. It is an eutrophic lake with Botryococcus braunii blooms occurred in autumn and winter in the years of 1993, 1996 and 1999. Death of fish, mainly Tilapia, were observed in the lake during B. braunii blooming. In order to elucidate the effects of algal blooms in this aquatic ecosystem, the toxicity of B. braunii was studied. Fifteen strains of phytoplankton were isolated from the lake and the cultures were tested for the toxicity of B. braunii extract on them. Results showed that except Microcystis flos-aquae and Oocystis parva, all other species exhibited various degrees of sensitivity to B. braunii. Population analysis of the tested species in the lake showed that the sensitivity to B. braunii was closely correlated with the abundance of these phytoplankton species in the lake during Botryococcus blooming. Toxic effects of B. braunii extract were also observed to the zooplankton collected from the Lake. In them, copepods showed higher sensitivity to crude extracts from B. braunii than cladocerans. All of these results suggest that B. braunii might play an allelopathic effect on other plankton.
In batch culture, the toxicities of B. braunii were enhanced when P- or N-nutrient became a limitation. The maximum toxicity was measured when the growth of cells was near the end of exponential growth phase. Under this condition, the nutrient concentrations in culture medium were close to those measured during B. braunii bloom, suggesting that the chemical environment in the Lake Li-Yu might create a favorable condition for B. braunii to survive and to compete with other plankton species.
The fractions containing active substances of B. braunii were soluble in organic solvents. Further isolation, purification, and identification of active substances, by employing TLC, HPLC, NMR, and GC-MS techniques, indicated that they were fatty acids, including palmitic acid (16:0), oleic acid (18:1ω9), linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3). The highest toxicity was revealed in C18-unsaturated fatty acids whose EC50 (or LC50) were found between 10-20μg‧mL-1 against phytoplankton as well as against zooplankton. Total free fatty acid content might be as high as 2.25% of dry weight, which was much higher than other 7 tested species of cyanophytes, chlorophytes and dinophytes.
Addition of B. braunii extract inhibited the photosynthetic electron flow of tested algal cells, while the respiration rate was affected little. Similar effects were also observed when C18-unsaturated fatty acids were added to the algal cultures. It is noteworthy that the tested cells would die even when the added concentrations were lower than IC50 value of inhibition of photosynthesis. However, the photosynthetic electron flow inhibitor, DCMU, did not cause the death of tested algal cells within 24 hrs. This implicates that the inhibition of electron flow was not the only cause of death B. braunii exerted to other algal species.
It was observed that addition of C18-unsaturated fatty acids to algal cultures caused a remarkable K+-leakage from tested cells within 30 minutes. The amount of released K+ might as high as 5-10% of total K+ in the cells. Enzymatic assays of ATPase showed that C18-unsaturated fatty acids did inhibit P-type, but not V- or F-type ATPase of the tested algal cells. Because P-type ATPase (especially H+-ATPase) is related to the maintenance of membrane potential, inhibition of this type of membrane enzyme might be attributed to K+-leakage from the cells. C18-unsaturated fatty acids did not exert inhibitory effect on V-, F-, or other P-type ATPase, but on Na+/K+-ATPase of copepods and cladocerans. It is assumed that toxic effects of B. braunii on crustacean zooplankton might be related to the interference of osmoregulation through inhibiting the Na+/K+-ATPase activity.
中 文 摘 要………………………………………………………..…….1
英 文 摘 要…………………………………….....……………………3
縮 寫 表……………………………………………………………………5
一、 前 言……………………………………………………………....6
二、材料與方法………………………………………………………….13
重要藥品與儀器列表……………………………………….......13
2.1 葡萄藻毒性物質的純化……………….………………………....15
2.2 葡萄藻毒性物質之化學結構鑑定……….............…………17
2.3 藻細胞自由態脂肪酸的定性與定量………………………….....18
2.4 藻株對葡萄藻毒性物質的敏感度測試……………….........…19
2.5 浮游動物對葡萄藻毒性物質的敏感度測試………………...22
2.6 葡萄藻於不同氮、磷濃度下的批次培養實驗……...........…24
2.7 葡萄藻抑制物質對藻類光合系統的抑制測試………….……....25
2.8 自由態脂肪酸對藻細胞之鉀離子滲漏的影響………….........28
2.9 自由態脂肪酸對藻細胞之P型ATPase活性的抑制測試.……...…29
2.10自由態脂肪酸對浮游動物之Na+/K+-ATPase活性的抑制測試……31
2.11 鯉魚潭水質及浮游生物資料的月調查………………………....32
三、結 果…………………………………………………………………34
3.1 葡萄藻毒性物質之定性與定量…………………………….......34
3.2 葡萄藻於不同營養鹽濃度下的毒性物質產生量之變化……...…37
3.3 毒性物質對於葡萄藻在鯉魚潭形成優勢所扮演的角色………….41
3.4 葡萄藻毒性物質對其它藻類的致毒機制………………….……..44
3.5 葡萄藻毒性物質對浮游動物的致毒機制……………….……....48
四、討 論…………………………………………………………………50
五、結 論………………………………………………………......…60
六、參 考 文 獻……………………………………..…………………62
表……………………………………………………...…………………71
圖…………………………………………………...………………....81
蔡財興,1998,花蓮縣鯉魚潭水質優養化之研究,國立東華大學自然資源管理研究所碩士論文。
堵南山,2000,中國淡水枝角類概論,水產出版社,基隆。
Adda, M., Merkuch, J. C. and Arad, S. 1986. Effect of nitrogen on growth and production of cell-wall polysaccharide by the unicellular red alga Porphyridium. Biomass 10:131-140.
Ahlgren, G., Gustafsson, I. B. and Boberg, M. 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28:37-50.
Akehurst, S. C. 1931. Observation on pond life with special reference to the possible causation of swarming of phytoplankton. R. Microsc. Soc. J. 51:237-265.
Ames, B. N. 1966. Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol. 8: 115-118.
Bagchi, S. N., Chauhan, V. S. and Marwah, J. B. 1993. Effect of an antibiotic from Oscillatoria late-virens on growth, photosynthesis, and toxicity of Microcystis awruginosa. Curr. Microbiol. 26:223-228.
Bailliez, C., Claude, L., Berkaloff, C. and Casadevall, E. 1986. Immobilization of Botryococcus braunii in alginate:influence on chlorophyll content, photosynthetic activity and degeneration during batch cultures. Appl. Microbiol. Biotechnol. 23:361-366.
Behrens, P. W., Hoeksema, S. D. Arnett, K. L., Cole, M. S., Heubner, T. A., Rutten, J. M. and Kyle, D. J. 1989. Eicosapentaenoic acid from microalgae. In: Novel Microbial Products for Medicine and Agriculture. Demain, A. L., Somkuti, G. A., Hunter-Cevera, J. C. and Rossmoore, H. W. [Eds.] Elsevier Science Pub. Co., New York, pp. 253-258.
Berland, B. R., Bonin, D. J. and Cornu, A. L. 1979. The antibacterial substances of the marine alga Stichochrysis immobilis (Chrysophyta). J. Phycol. 8:383-392.
Blackburn, K. B. 1936. A reinvestigation of the alga Botryococcus braunii Kützing. Trans. R. Soc. Edinb. 58:841-854.
Blackburn, K. B. and Temperley, B. N. 1936. Botryococcus and algal coals. Proc. R. Soc. Edinb. 58:841-846.
Bollag, D. M., Rozycki, M. D. and Edelstein, S. J. [Eds.] 1996. Protein concentration determination, Lowry assay. In: Protein Methods. Wiley-Liss Inc., New York, pp. 56-59.
Boodle, L. A. 1907. N’Hangellite and coorongite. Bull. Misc. Inf. R. Bot. Gdns. Kew 5:146-151.
Braden, L. M. and Caroll, K. K. 1986. Dietary polyunsaturated fat in relation to mammary carcinogenesis in rats. Lipids 21:285-288.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Brenner, R. R. 1989. Factors influencing fatty acid chain elongation and desaturation. In: The role of Fat in Human Nutrition. Vergroesen, A. J. and Crawford, M. [Eds.] Academic Press, London, pp.45-79.
Brown, A. C. and Knights, B. A. 1969. Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry 8:543-547.
Bury, N. R., Codd, G. A., Wendelaar Bonga, S. E. and Flik, G. 1998. Fatty acids from the cyanobacterium Microcystis aeruginosa with potent inhibitory effects on fish gill Na+/K+-ATPase activity. J. exp. Biol. 201:81-89.
Button, K. S. and Blinn, D. W. 1973. Preliminary seasonal studies on algae from Upper Lake Mary, Arizona. Arizona Acad. Sci. 8:80-83.
Cane, R. F. and Albion, P. R. 1973. The organic geochemistry of torbanite precursors. Geochem. Cosmochim. Acta 37:1543-1549.
Cane, R. F. 1977. Coorgongite, Balksashite and related substances-An annotated bibliography. Trans. R. Soc. S. Aust. 101:153-164.
Chaia, A. P., de Saad, A. M. S., de Ruiz Holgado, A. A. P. and Oliver, G. 1994. Proton-ATPase activity in cells of lactobacilli grown in the presence of propionate. J. appl. Bacteriol. 77:37-41.
Chirac, C., Casadevall, E., Largeau, C. and Metzger, P. 1985. Bacterial influence upon growth and hydrocarbon production of the green alga Botryococcus braunii. J. Phycol. 21:380-387.
Cook, H. W. 1985. Fatty acid desaturation and chain elongation in eucaryote. In: Biochemistry of Lipids and Membranes. Vance, D. E. and Vance, J. E. [Eds.] Benjamin/Cummings Pub. Co., Menlo Park, pp.181-212.
Crawford, S. A. 1979. Farm pond restoration using Chara vulgaris vegetation. Hydrobiologia 62:17-31.
De Cano, M. M. S., De Mulé, M. C. Z., De Caire, G. Z. and De Halperin, D. R. 1990. Inhibition of Candida albicans and Staphylococcus aureus by phenolic compounds from the terrestrial cyanobacterium Nostoc muscorum. J. appl. Phycol. 2:79-91.
Dietz, C. 1957. Der Marahunit, seine Verbreitung und stratigraphische Stellung im Tertiär usw. Geol. Jahrb. Beiheft 25:105-147.
DeMott, W. R. and Moxter, F. 1991. Foraging on cyanobacteria by copepods: responses to chemical defenses and resource abundance. Ecology 72: 1820-1834.
Dratz, E. A. and Deese, A. J. 1986. The role of docosahexaenoic acid in biological membranes: example from photoreceptors and model membrane bilayers. In: Health Effects of Polyunsaturated Fatty Acids in Sea Foods. Simopoulos, A. P., Kifer, R. R. and Martin, R. E. [Eds.] Academic Press, Orlando, pp. 319-330.
Duff, D. C. B., Bruce, D. L. and Antia, N. J. 1966. The antibacterial activity of marine planktonic algae. Can. J. Microbiol. 12:877-884. 
Entzeroth, M., Mead, D. J., Patterson, G. M. L. and Moore, R. E. 1985. A herbicidal fatty acid produced by Lyngbya aestuarii. Phytochemistry 12:2875-2876.
Ewing, R. D., Peterson, G. L. and Conte, F. P. 1974. Larval salt gland of Artemia salina nauplii. Location and characterization of the sodium-potassium-activated adenosine triphosphatase. J. Comp. Physiol. 88:217-234.
Findlay, J. A. and Patil, A. D. 1984. Antibacterial constituents of the diatom Navicula delognei. Lloydia 47:815-818.
-------. 1986. Antibacterial constituents of the red alga Cystoclonium purpureum. Phytochemistry 25(2):548-550.
Fulton III, R. S. and Paerl, H. W. 1987. Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. J. Plankton Res. 9:837-855.
Gams-Wassenberg, H. 1922. Einige Gewässertypen des Alpengebiets. Intl. Assoc. Theor. Appl.Limnol. Verhandl. 1:288-193.
Gentien, P. and Arzul, G. 1990. Exotoxin production by Gyrodinium cf. aureolum (Dinophyceae). J. Mar. Biol. Assoc. U.K. 70:571-581.
Gilson, H. C. 1964. Lake Titicaca. Intl. Assoc. Theor. Appl. Limnol. 15:112-127.
Gleason, F. K. and Paulson, J. L. 1984. Site of action of the natural algicide cyanobacterin, in the blue-green algae Synechococcus sp. Arch. Microbiol. 138:273-277.
Goulden, C. E. and Place, A. R. 1990. Fatty acids synthesis and accumulation rates in Daphniids. J. Exp. Zool. 256:168-178.
Good, P. J., Richter, K. and Dawid, I. B. 1990. A nervous system-specific isotype of the βsubunit of Na+/K+-ATPase expressed during early development of Xenopus laevis. Proc. Natl. Acad. Sci. 87:9088-9092.
Green, J., Corbet, S. A. and Betney, E. 1974. Ecological studies on crater lakes in West Cameroon, Debundsha Lake. J. zool. (Lond.) 173:199-223.
Gross, E. M., Wolk, C. P. and Jüttner, F. 1991. Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella muscicola. J. Phycol. 27:686-692.
Harborne, J. B. [Ed.] 1977. The plant and its biochemical adaptation to the environment. In: Introduction to ecological biochemistry. Academic press, London, pp. 1-32.
Hedrich, R. and Schroeder, J. I. 1989. The physiology of ion channels and electrogenic pumps in higher plants. Annu. Rev. plant Physiol. Plant Mol. Biol. 40:539-569.
Hiroyuki, H. and Takaaki, Y. 1977. Illustrations of the Japanese fresh-water algae. Uchida-Rokakuho, Tokyo.
Ikawa, M., Haney, J. F. and Sasner, J. J. 1996. Inhibition of Chlorella growth by the lipids of cyanobacterium Microcystis aeruginosa. Hydrobiologia 331:167-170.
Inderjit and Dashini, K. M. M. 1994. Algal allelopathy. Bot. Rev. 60:182-196.
Jessen, K. and Milthers, V. 1928. Stratigraphical and Paleontological studies of interglacial fresh water deposits in Jutland and northwest Germany. Danmarks Geol. Unders. 4:379.
Jørgensen, E. G. 1956. Growth-inhibiting substances formed by algae. Physiol. Plant. 9:712-726.
Jork, H., Funk, W., Fisher W. and Wimmer H. 1994. Vanillin reagents. In: Thin-layer chromatography. VCH, Weinheim, pp.440-452.
Keating, K. I. 1977. Allelopathic influences on blue-green sequence in a eutrophic lake. Science 196:885-887.
-----.1978. Blue-green algal inhibition of diatom growth:Transition from mesotrophic to eutrophic community structure. Science 199:971-973.
Komárek, J. and Fott, B. 1983. Das Phytoplankton des Süβwassers. 7. Teil (1. Hälfte). E. Schweizerbart’sche. Verlagsbuchhandlung, Stuttgart.
Krogmann, D. W. and Jagendorf, A. J. 1959. Inhibition of the Hill reaction by fatty acids and metal helating agents. Arch. Biochem. Biophys. 80:424-430.
Lanzetta, P. A., Alvarez, L. J., Reinach, P. S. and Candia, O. A. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100:95-97.
Largeau, C., Casavall, E., Berkaloff, C. and Dhamelincourt, P. 1980. Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043-1051.
Lee, S. J., Kim, S. B., Kim, J. E. Kwon, G. S., Yoon, B. D. and Oh, H. M. 1998. Effects of harvesting methods and growth stage on the flocculation of the green alga Botryococcus braunii. Lett. Appl. Microbiol. 27:14-18.
Litinsky, L. L. 1921. Bailash ‘sapropelite’. Petroleum (Berlin) 17:437-440.
Lubzens, E., Marko, A. and Tietz, A. 1985. De Novo synthesis of fatty acids in the rotifer, Brachionus plicatilis. Acquaculture 47:27-37.
Lupi, F. M., Fernandes, H. M. L., Tomé, M. M., Sá-Correia, I. And Novais, J. M. 1994. Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC58. Enzyme Microb. Technol. 16:546-550.
Lürling, M. and Ellen, V. D. 1997. Morphological changes in Scenedesmus induced by infochemicals release in situ from zooplankton grazer. Limnol. Oceanogr. 42:783-788.
Mackinney, G. 1941. Absortion of light by chlorophyll solutions. J. Biol. Chem. 140:312-315.
Maestrini, S. Y. and Bonin, D. J. 1982. Allelopathic relationships between phytoplankton species. Can Bull. Fish. Aquat. Sci. 210:323-338.
Master, M. J. 1971. The occurrence of Chytridium marylandicum on Botryococcus braunii in school Bay of the Delta Marsh. Can. J. Bot. 49:1479-1485.
Maxwell, J. R., Douglas, A. G., Eglinton, G. and McCormick, A. 1968. The botryococcenes-. Hydrocarbons of novel structure from the alga Botryococcus braunii Kützing. Phytochemistry 7:2157-2171.
McCauley, E. and Murdoch, W. W. 1987. Cyclic and stable populations: plankton as paradigm. Am. Nat. 129:97-121.
McCauley, E., Murdoch, W. W. and Watson, S. 1988. Simple models and variation in plankton densities among lakes. Am. Nat. 132:383-403.
McCauley, E., Nibsbet, R. M., Murdoch, W. W., de Roos, A. M. and Gurney W. S. C. 1999. Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402:653-656.
McCracken, M. D., Middaugh, R. E. and Middaugh, R. S. 1980. A chemical characterization of an algal inhibitor obtained from Chlamydomonas. Hydrobiologia 70:271-276.
McDonough, A. A., Magyar, C. E. and Komatsu, Y. 1990. The sodium pump needs its beta subunit. FASEB J. 4:1598-1605.
Mercer, R. W. 1993. Structure of the Na,K-ATPase. Int. Rev. Cytol. 137:139-168.
Metzger, P., Berkaloff, C., Casadevall, E. and Coute, A. 1985. Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305-2313.
Mitchell, J. G., Okubo, A. and Fuhrmann, J. A. 1985. Microzones surrounding phytoplankton from the basis for a stratified marine microbial ecosystem. Nature 316:58-59.
Mizuno, S. 1976. Illustration of the freshwater plankton of Japan. Hoikusha, Osaka.
Moore, R. E., Cheuk, C. and Patterson, G. M. L. 1984. Hapalindoles: new alkaloids from the blue-green alga Hapalosiphon fontinalis. J. Am. Chem. Soc. 106:6456-6457.
Moore, R. E., Cheuk, C., Yang, X. Q. G., Patterson, G. M. L., Bonjouklian, R., Smitka, T. A., Mynderse, J. S., Foster, R. S., Jones, N. D., Swartzendruber, J. K. and Deeter, J. B. 1987. Hapalindoles, antibacterial and antimycotic alkaloids from the cyanophyte Hapalosiphon fontinalis. J. org. Chem. 52:1036-1043.
Morohashi, M.,Tsuchiya, K., Mita, T. and Kawamura, M. 1991. Identification of (Na,K)ATPase inhibitor in brine shrimp, Artemia salina, as long-chain fatty acids. J. Comp. Physiol., B 161:69-72.
Müller-Navarra, D. C. 1995. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch. Hydrobiol. 132:297-307.
Müller-Navarra, D. C., Brett, M. T., Liston, A. M. and Goldman, C. R. 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74-77.
Murdoch, W. W., Nisbet, R. M., McCauley, E., de Roos, A. M. and Gurney, W. S. C. 1998. Plankton abundance and dynamics across nutrients levels: test of hypothesis. Ecology 79:1339-1356.
Nagan, F. and Toofan, W. 1991. Modification of preparation of diazomethane for methyl esterification of enviromental samples analysis by gas chromatography. J. Chromatogr. Sci. 29:8-10.
Ohta, S., Shiomi, Y., Kawashima, A. Aozasa, O. and Nakao, T. 1995. Antibiotic effect of LNA from Chlorococcum strain HS-101 and Dunaliella primolecta on methicillin-resistant Staphylococcus aureus. J. Appl. Phycol. 7:121-127.
Paterson, R. A. 1962. Lacustrine chytridiaceous fungi from Maryland. Mycologia 54:694-703.
Pedersen, M. and Dasilva, E. J. 1973. Simple brominated phenols in the bluegreen alga Calothrix brevissima West. Planta 115:83-96.
Proctor, V. W. 1957. Some controlling factors in the distribution of Haematococcus pluvialis. Ecology 38:457-462.
Ramamurthy, V. D. 1970. Antibacterial activity of the marine blue-green algae Trichodesmium erythraeum in the gastro-intestinal tract of the sea gull Larus brumicephalus. Mar. Biol. 6:74-76.
Raven, J. A. 1989. Transport System in algae and bryophytes:an overview. Methods in Enzymology 174:366-390.
Reddt, B. S. and Maruyama, H. 1986. Effect of dietary fish oil on aroxymethane induces color carcinogensis in male F344 rats. Cancer Res. 46:3367-3370.
Redwood, B. 1907. Report on a sample of N’Hangellite from inhambane, Portuguese East Africa. Bull. Misc. Inf. R. Bot. Gdns. Kew 5:151-153.
Robert, W. S. 1989. The role of grazers in phytoplankton succession. In: Plankton ecology. Sommer, U. [Ed.] Springer-Verlag Publishers, New York, pp.107-170.
Reese, J. C. 1979. Interaction of allelochemicals with nutrients in herbivore food. In: Herbivores, their interaction with secondary plant metabolites. Rosenthal, G. A. and Janzen, D. H. [Eds.] Academic Press, New York, pp. 309-330.
Ruttner, F. 1952. Planktonstudien der Deutschen Limnologischen Stundaexpedition. Arch. Hydrobiol. 21:13.
Sargent, J. R., Morris, R. J. and McIntosh, R. 1978. Biosynthesis of wax esters in oceanic crustaceans. Mar. Biol. 46:315-320.
Sargent, J. R., Parkes, R. J., Mueller-Harvey, I. and Henderson, R. J. 1987. Lipids biomarkers in marine ecology. In: Microbes in the Sea. Seigh, M. A. [Ed.] Ellis Horwood Ltd., Chichester, 99. 119-138.
Scoufflaire, C., Chow, W. S., Barber, J. and Lannoye, R. 1981. In: Proceedings of the Fifth International Congress on Photosynthesis. Akoyunoglou, G. [Ed.] Balaban International Science Services, Philadelphia, 1:605-615.
Sieburth, J. M. 1959. Acrylic acid, an ‘antibiotic’ principle in Phaeocystis blooms in antiarctic waters. Science 132:676-677.
Shamraj, O. I. and Lingrel, J. B. 1994. A putative fourth Na+/K+-ATPase α subunit gene is expressed in testis. Proc. Natl. Acad. Sci. 91:12952-12956.
Skou, J. C. and Esmann, M. 1992. The Na,K-ATPase. J. Bioenerg. Biomembr. 24:249-261.
Smahel, M., Klieber, H. G. and Gradmann, D. 1992. Vanadate-sensitive ATPase in the plasmalemma of Acetabularia: biochemical and kinetic characterization. Planta 188:62-69.
Soeder, C. J. and Bolze, A. 1981 Sulfate deficiency stimutes release of dissolved organic matter in synchronous cultures of Scenedesmus obliquus. Physiol. Plant. 52:233-238.
Spruell, J. A. 1984. Response of algae and zooplankton to C18 fatty acids of Chlamydomonas reinhardtii. Hydrobiologia 114:9-12.
Sumich, J. L. [Ed.] 1996. The zooplankton. In: An introduction to the biology of marine life. Wm C. Brown Publishers, Dubuque, pp.298-315.
Suzuki, M., Wakana, I., Denboh, T. and Tatewaki, M. 1996. An allelopathic polyunsaturated fatty acid from red algae. Phytochemistry 43:63-65.
Swain, F. M. and Golby, J. M. 1964. Ecology and taxonomy of Ostracoda and an alga from Lake Nicaragua. Pubbl. Stn. Zool. Napoli. 33:361-386.
Swarts, H. G. P., Schuurmans Stekhoven, F. M. A. H. and De Pont, J. J. H. H. M. 1990. Binding of unsaturated fatty acids to Na+,K+-ATPase leading to inhibition and inactivation. Biochim. Biophys. Acta 1024:32-40.
Todorova, A. and Jüttner, F. 1996. Ecotoxicological analysis of nostocyclamide, a modified cyclic hexapeptide form Nostoc. Phycologia 35:183-188.
Tal, D. M., Yanuck, M. D., van Hall, G. and Karlish, S. J. D. 1989. Identification of Na+/K+-ATPase inhibitors in bovine plasma as fatty acids and hydrocarbons. Biochim. Biophys. Acta 985:55-59.
Tsuchiya, H., Hayashi, T., Sato, M., Tatsumi, M. and Takagi, N. 1984. Simultaneous separation and sensitive determination of free acids in blood plasma by high-performance liquid chromatography. J. Chromatogr. 309:43-52.
US Environmental Protection Agency. 1992. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater phytoplankton by fluorescence. Method 445.0 Cincinnati, Ohio.
Venediktov, P. S. and Krivoshejeva, A. A. 1983. The mechanisms of fatty-acid inhibition of electron transport in chloroplasts. Planta 159:411-414.
Volkman, J. K., Dunstan, G. A., Jeffrey, S. W. and Kearney, P. 1991. Fatty acids from microalgae of the genus Pavlova. Phytochemistry 30:1855-1859.
Wake, L. V. and Hillen, L. W. 1980. Study of a bloom of the oil-rich alga Botryococcus braunii in the Darwin River Reservoir. Biotech. Bioeng. 22:1637-1656.
Warden J. T. and Csatorday, K. 1987. On the mechanism of LNA inhibition in Photosystem II. Biochim. Biophys. Acta 890:215-223.
Wolf, F. R. and Cox, E. R. 1981. Ultrastructure of active and resting colonies of Botryococcus braunii(Chlorophyceae). J. Phycol. 17:395-405.
Wolf, F. R. Nonomura, A. M. and Bassham, J. A. 1985. Growth and branched hydrocarbon production in a strain of Botryococcus braunii (Chlorophyta). J. Phycol. 21:388-396.
Yongmanitchai, W. and Ward, O. P. 1991. Growth and omega-3 fatty acid production by Phaeodactylum tricornnyum under different culture conditions. Appl. Environ. Microbiol. 57:419-426.
Zalessky, M. D. 1917. On some sapropelic fossils. C. R. Bull. Soc. Geol. Fr. 17:373-379.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔