(3.238.186.43) 您好!臺灣時間:2021/02/26 11:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:梁宏明
研究生(外文):Huang-Min Liang
論文名稱:異質混合通風空間中畜舍揮發性有機臭氣之動態傳輸
論文名稱(外文):Dynamic Transport of Livestock Generated VOC-Odor in a Ventilated Airspace with Mixing Heterogeneity
指導教授:廖中明廖中明引用關係
指導教授(外文):Chung-Min Liao
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學系暨研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:154
中文關鍵詞:揮發性有機臭氣異質混合停留時間分佈混合因子清除準則
外文關鍵詞:Odors causing volatile organic compoundsmixing heterogeneityresidence time distributionmixing factorclean-up criteria
相關次數:
  • 被引用被引用:1
  • 點閱點閱:147
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
豬糞尿在厭氧條件下會產生揮發性有機臭氣(VOC臭氣),為研擬其在異質混合通風空間中之動態傳輸過程,本文以對甲酚(p-cresol)、甲苯(toluene)及對二甲苯(p-xylene)三種VOC臭氣作為研究對象,考慮VOC衰減過程及豬糞尿分層現象。VOC主要分佈於糞尿坑下方污染層,其上有一層較為清澈之澄清層,假設糞漿未經攪動,VOC臭氣由豬糞尿污染層產生,穿過澄清層及空氣邊界層,將VOC臭氣的濃度變化表示成傳輸擴散方程式,經由理論推導,計算畜舍內對甲酚、甲苯及對二甲苯三種VOC臭氣濃度隨時間變化,求出工作人員在畜舍內10年暴露時間所吸入的VOC臭氣總劑量,並與安全標準劑量相較,訂立畜舍惡臭清除準則。由於畜舍通風型態差異影響VOC臭氣濃度分佈,本研究基於停留時間分佈(residence time distribution,RTD)及三參數gamma 分佈之統計理論推導多氣流區gamma模式(multiple airflow regions gamma model,MARGM) ,將通風空間內部視為由完全混合(complete mixing)、不完全混合(incomplete mixing)及栓塞流(piston flow)三種氣流型態所組成,以此模擬異質混合通風畜舍內部氣流混合型態。將VOC傳輸模式推求之濃度對時間分佈資料以MARGM進行擬合,求出VOC臭氣平均停留時間及混合因子(mixing factor),由此探討VOC臭氣在時間及空間分佈特性,預測通風空間氣流的異質混合行為。以台南新市一機械通風畜舍為對象,並考慮豬糞尿含水量60、70及80%,澄清層厚度為1公分及污染層厚度4公分與澄清層厚度為2公分及污染層厚度8公分兩種豬糞尿層厚度進行模式模擬,模擬結果顯示對甲酚尖峰濃度於含水量60%時最高,當含水量增加時濃度降低;甲苯及對二甲苯尖峰濃度則隨含水量增加而增高,當澄清層厚度增加會延長尖峰濃度到達時間。由工作人員在畜舍內10年暴露時間所吸入的VOC臭氣總劑量,與安全標準劑量相較,訂立畜舍惡臭清除準則顯示對甲酚、甲苯及對二甲苯所允許的初始濃度值分別為10.10、6.13及6.69 g m-3。MARGM模擬對甲酚於通風流量為3.75 m3 s-1,含水量70±10%時,在畜舍平均停留時間為44.45±0.91小時,平均混合因子0.20±0.05;甲苯於通風流量為7.5 m3 s-1,含水量70±10%時,在畜舍平均停留時間為267.30±58.90小時,平均混合因子0.81±0.17;對二甲苯於通風流量為5 m3 s-1,含水量70±10%時,在畜舍平均停留時間為332.38±129.83小時,平均混合因子0.81±0.19。以MARGM模擬通風空間氣流之混合行為,可將氣流混合型態經由VOC臭氣濃度之擬合,推求平均停留時間以掌握VOC臭氣在畜舍內部時間分佈特性,並由平均混合因子瞭解空間分佈特性,以此作為異質混合環境模擬之指標,其強韌性可提供做為室內通風改善參考。
Odors causing volatile organic compounds (VOC-odors) are released as the result of mass transfer from stored pig slurry under anaerobic decomposition. This research proposes a VOC-odors-transport-model to simulate the diffusion behavior of p-cresol, toluene, and p-xylene, (the three intense VOC-odors found in swine housing) and to study their dynamic transport processes in a ventilated airspace with mixing heterogeneity. A hypothetical scenario is used which assumed that pig slurry as undisturbed followed by the release of VOC-odors in contaminated layer, transported through a clean layer and as well as an air-boundary layer. The variation of VOC-odor concentration could be presented as a diffusion equation to simulate its transport processes. Swine manure clean-up criteria based on non-excess of the total hazardous dose corresponding to an acceptable risk from indoor inhalation for 10 years could then be calculated. We developed a multiple airflow regions gamma model (MARGM) to simulate airflow patterns in a ventilated airspace with mixing heterogeneity based on residence time distribution and gamma distribution statistics. The residence time distribution function takes the form of the three-parameter gamma distribution and account for different mixing types such as complete mixing, piston flow, incomplete mixing, and various combinations of the above types. By fitting the VOC-odor concentration profiles with three-parameter gamma distribution, we can characterize the extent of mixing and provide information for predicting mixing heterogeneity in a ventilated livestock through mixing factor and mean residence time of selected VOC-odors. The typical swine unit with mechanical ventilation system in Tainan was selected for model simulation. The moisture content varied from 60 to 80%; the depth of clean layer varied from 1 to 2cm as well as contaminated layer from 4 to 8cm. The results show that the peak concentration of p-cresol at moisture content 60% is higher than that of 70% or 80%. Moisture content shows different effects to the peak concentration of toluene or p-xylene. Increase in thickness of clean layer will delay the time to peak concentrations. Calculated swine manure clean-up criteria of p-cresol, toluene and p-xylene are 10.10, 6.13, and 6.69 g m-3, respectively. Results from MARGM simulation demonstrate that the mean residence time of p-cresol is 44.45±0.91 h and mean mixing factor is 0.20±0.05 corresponding to a ventilation rate of 3.75m3 s-1 and manure moisture content of 70±10%. When ventilation rate is 7.5 m3 s-1 and manure moisture content is at 70±10%; resulting in a mean residence time of toluene of 267.30±58.90 h with a mean mixing factor of 0.81±0.17. When ventilation rate is 5 m3 s-1 and manure moisture content is at 70±10%; resulting in a mean residence time of p-xylene of 332.38±129.83 h and a mean mixing factor of 0.81±0.19. Our results give additional physical information to characterize mixing behavior temporally and spatially with mean residence time and mixing factor, respectively. The robustness of MARGM can offer designers to reconsider the efficiency of ventilation systems though different mixing flow pattern in place of complete mixing hypothesis.
中文摘要 i
英文摘要 iv
表目錄 ix
圖目錄 x
符號說明 xi
壹、前言 1
貳、研究目的 3
參、文獻回顧 4
3.1 VOC臭氣 4
3.1.1 來源與成分 4
3.1.2 VOC臭氣對人健康影響 10
3.1.3 影響VOC臭氣傳輸因素探討 11
3.2 通風空間中污染質時空分佈特性 13
3.2.1 異質混合現象 13
3.2.2 混合因子定義 19
3.2.3 混合因子應用 21
3.2.4 停留時間分佈(RTD)推求 25
3.2.5 停留時間分佈(RTD)應用 29
3.3 數理模式文獻回顧 31
3.3.1 VOC傳輸模式 31
3.3.2 通風空間氣流模式 38
肆、模式結構 46
4.1 VOC臭氣傳輸模式 46
4.1.1 模式發展 46
4.1.2 VOC傳輸模式假設 49
4.1.3 VOC臭氣濃度及通量 50
4.1.4 豬糞尿無分層現象之質量平衡式 54
4.1.5 由豬糞尿分層現象探討VOC臭氣傳輸 58
4.1.6 清除準則演算 63
4.1.7 參數特性 65
4.2 多氣流區gamma模式(MARGM) 67
4.2.1 模式發展緣起 67
4.2.2 MARGM模式假設 70
4.2.3 Gamma密度函數 70
4.2.4 MARGM與完全混合及栓塞流模式之對應 73
4.2.5 由MARGM推演混合模式 74
伍、結果與討論 77
5.1 畜舍環境參數 77
5.2 結果 82
5.2.1 畜舍VOC臭氣濃度演算 82
5.2.2 畜舍VOC臭氣累積劑量 92
5.2.3 清除準則演算 98
5.2.4 MARGM模擬結果 101
5.3 討論 115
5.3.1 VOC臭氣特性 115
5.3.2 含水量變化產生的效應 116
5.3.3 豬糞尿層厚度的效應 117
5.3.4 溫度的效應 117
5.3.5 MARGM參數的效應 120
5.3.6 由氣流混合型態探討平均混合因子 126
5.3.7 系統響應 127
陸、結論及建議 130
6.1 結論 130
6.2 建議 132
參考文獻 134
附錄A:多氣流區gamma模式(MARGM)參數α、β及γ之推導 145
附錄B:@RISK內建函數模擬VOC臭氣濃度優劣排序 148
附錄C:簡歷 151
附錄D:著作 152
Ahn, I. S., L. W. Lion, and M. L. Shuler. 1999. Validation of a hybrid two-site gamma model for naphthalene desorption kinetics. Environ. Sci. Tech. 33(18): 3241-3248.
ASAE Standards. 2001. Manure management. American Society of Agricultural Engineers, St. Joseph, MI.
Barber, E. M., and J. R. Ogilvie. 1982. Incomplete mixing in ventilated airspaces. Part I. Theoretical considerations. Canadian Agric. Eng. 24(1): 25-29.
Barber, E. M., and J. R. Ogilvie. 1984. Incomplete mixing in ventilated airspaces. Part II. Scale model study. Canadian. Agric. Eng. 26(2): 189-196.
Barth, C. L., and L. B. Polkowski. 1974. Identifying odourous components of stored dairy manure. Trans. ASAE 17(4): 737-741.
Barth, C. L., L. F. Elliot, and S. W. Melvin. 1982. Using odour control technology to support animal agriculture. Paper No.82-4035. ASAE, St. Joseph, MI.
Bessette, L., L. P. Boulet, G. Tremblay, and Y. Cormier. 1993. Bronchial responsiveness to methacholine in swine confinement building workers. Archives Environ. Health 48(2): 73-77.
Bongers, P., D. Houthuijs, B. Remijn, R. Brouwer, and K. Biersteker. 1987. Lung function and respiratory symptoms in pig farmers. Br. J. Ind. Med. 44(12): 819-823.
Bosworth, R. C. L. 1948. Distribution of reaction times for laminar flow in cylindrical reactors. Philosophical Magazine 39: 846-862.
Bouhamra, W., and A. Elkilani. 1999. Development of a model for the estimation of indoor volatile organic compounds concentration based on experimental sorption parameters. Environ. Sci. Tech. 33(12): 2100-2105.
Bowes, S. M., E. G. Mason, and M. Corn. 1993. Confined space ventilation: tracer gas analysis of mixing characteristics. Am. Ind. Hyg. Assoc J. 54(11): 639-646.
Buiter, J. J., and S. J. Hoff. 1998. Ammonia distribution in a pit-ventilated confinement building: One-half scale model study. Trans. ASAE 41(6): 1817-1827.
Chang, C. W., H. Chung, C. F. Huang, and H. J. J. Su. 2001. Exposure assessment to airborne endotoxin, dust, ammonia, hydrogen sulfide and carbon dioxide in open style swine houses. Annals Occupational Hyg. 45(6): 457-465.
Chen, Y. C., E. M. Barber, Y. Zhang, R. W. Besant, and S. Sokhansanj. 1999. Methods to measure dust production and deposition rates in buildings. J. Agric. Eng. Res. 72(4): 329-340.
Choi, H. L., L. D. Albright, M. B. Timmons, and Z. Warhaft. 1988. An application of the k-epsilon turbulence model to predict air distribution in a slot-ventilated enclosure. Trans. ASAE 31(6):1804-1814.
Cholette, A., and L. Cloutier. 1959. Mixing efficiency determination for continuous flow systems. Canadian J. Chem. Eng. 37:105-112.
Choudat, D., M. Goehen, M. Korobaeff, A. Boulet, J. D. Dewitte, and M. H. Martin. 1994. Respiratory symptoms and bronchial reactivity among pig and dairy farmers. Scandinavian J. Work. Environ. Health 20(1): 48-54.
Chung, K. C., and S. P. Hsu. 2001. Effect of ventilation pattern on room air and contaminant distribution. Building Environ. 36(9): 989-998.
Clanton, C. J., D. R. Schmidt, R. E. Nicolai, L. D. Jacobson, P. R. Goodrich, K. A. Janni, and J. R. Bicudo. 2001. Geotextile fabric-straw manure storage covers for odor, hydrogen sulfide, and ammonia control. Applied Eng. Agric. 17(6): 849-858.
Cloutier, L., and A. Cholette. 1968. Effect of various parameters on the level of mixing in continuous flow systems. Canadian J. Chem. Eng. 46:82-88.
Constance, J. D. 1970. Mixing factor is guide to ventilation. Power 114: 56-57.
Culver, T. B., S. P. Hallisey, D. Sahoo, J. J. Deitsch, and J. A. Smith. 1997. Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates. Environ. Sci. Tech. 31(6): 1581-1588.
Danckwerts, P. W. 1953. Continuous flow systems: distribution of residence times. Chem. Eng. Sci. 2(1): 1-13.
Donham, K. J., D. C. Zavala, and J. A. Merchant. 1984. Acute effects of the work environment on pulmonary functions of swine confinement workers. Am. J. Ind. Med. 5(5): 367-375.
Gao, W., and J. J. R. Feddes. 1993. Using swine dust to verify a lumped-parameter model in a ventilated enclosure. Canadian Agric. Eng. 35(1): 67-73.
Gioia, F., F. Murena, and V. Esposito. 1997. Role of natural convection on the emission of volatiles from a bed of contaminated particles. Environ. Sci. Tech. 31(2): 351-358.
Grot, R. A., and P. L. Lagus. 1991. Application of tracer gas analysis to industrial hygiene investigations, Lagus Applied Tech., Inc San Diego, CA. pp. 1-21.
Hammond, E. G., C. Fedler, and G. Junk. 1979. Identification of dust-borne odours in swine confinement facilities. Trans. ASAE 22(6): 1186-1189.
Hoff, S. J., K. A. Janni, and L. D. Jacosbon. 1992. Three-dimensional buoyant turbulent flows in a scaled model, slot-ventilated, livestock confinement facility. Trans. ASAE 35(2): 671-686.
Hoff, S. J., and D. S. Bundy. 1996. Comparison of contaminant dispersion modeling approaches for swine housing. Trans. ASAE 39(3): 1151-1157.
Howard, P. H., R. S. Boethling, W. F. Jarvis, W. M. Meylan, and E. M. Michalenko. 1991. Handbook of Environmental Degradation Rates. Lewis Pub., Inc., Chelsea, MI. pp. 366,410,643.
Iversen, M., and R. Dahl. 2000. Working in swine-confinement buildings causes an accelerated decline in FEV1: a 7-yr follow-up of Danish farmers. European Respiratory J. 16(3): 404-408.
Jennings, B. H., and J. H. Armstrong. 1971. Ventilation theory and practice. ASHRAE Trans. 77(I): 50-60.
Jiang, S., E. M. Barber, A.G. Meiering, and J. C. Jofriet. 1991. Toxic gas-production and silo ventilation. Candian Agric. Eng. 33 (1): 151-159.
Johnson, P. C., and R. A. Ettinger. 1991. Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environ. Sci. Tech. 25(8): 1445-1452.
Jury, W. A., R. Grover, W. F. Spencer, and W. J. Farmer. 1980. Modeling vapor losses of soil-incorporated triallate. Soil Sci. Am. J. 44(3): 445-450.
Jury, W. A., W. F. Spencer, and W. J. Farmer. 1983. Behavior assessment model for trace organics in soil: I. Model description. J. Environ. Qual. 12(4): 558-564.
Jury, W. A., D. Russo, G. Streile, and H. E. Abd. 1990. Evaluation of volatilization by organic chemicals residing below the soil surface. Water Resour. Res. 26(1): 13-20.
Karimi, A. A., W. J. Farmer, and M. M. Cliath. 1987. Vapor-phase diffusion of Benzene in soil. J. Environ. Qual. 16(1): 38-43.
Kaul, P., W. Maltry, H. J. Muller, and V. Winter. 1975. Scientical-technical principles for the control of the environment in livestock houses and stores. Translation 430, Br. Soc. Res. Agric. Eng., Natl. Inst. Agric. Eng., Silsoe.
Laquerbe, C., J. C. Laborde, S. Soares, L. Ricciardi, P. Floquet, L. Pibouleau, and S. Domenech. 2001. Computer aided synthesis of RTD models to simulate the air flow distribution in ventilated rooms. Chem Eng. Sci. 56(20): 5727-5738.
Leistra, M. 1979. Computing the movement of ethoprophos after application in the spring. Soil. Sci. 128: 303-311.
Levenspiel, O. 1999. Chemical reaction engineering. Third Ed. John Wiley & Sons, New York. pp. 257-292.
Liao, C. M., and J. J. R. Feddes. 1990. Mathematical analysis of a lumped-parameter model for describing the behavior of airborne dust in animal housing. Appl. Math. Modelling 14(5): 248-257.
Liao, C. M., and J. J. R. Feddes. 1991. Modelling and analysis of airborne dust removal from a ventilated airspace. Canadian Agric. Eng. 33(2): 355-361.
Liao, C. M., and J. J. R. Feddes. 1992. Lumped-parameter model for predicting airborne dust concentration in a ventilated airspace. Trans. ASAE 35(6): 1973-1978.
Liao, C. M., and D. S. Bundy. 1994. Bacteria additives to the changes in gaseous mass transfer from stored swine manure. J. Environ. Sci. Health B29(6): 1219-1249.
Liao, C. M., and D. S. Bundy. 1995. Quantification of ventilation on distribution of gaseous pollutants emitted from stored swine manure. J. Environ. Sci. Health B30(6):859-893.
Liao, C. M. 1997. Use of residence time distribution for evaluation of gaseous pollutant volatilization from stored swine manure. J. Environ. Sci. Health B32(1): 127-145.
Liao, C. M., H. M. Liang, and S. Singh. 1997. Swine manure cleanup criteria calculation for odor causing volatile organic compounds based on manure-to-ventilation air exposure pathway. J. Environ. Sci. Health B32(4): 449-468.
Liao, C. M., and S. Singh. 1998. Modeling dust-borne odor dynamics in swine housing based on age and size distributions of airborne dust. Applied Math. Modelling 22(9): 671-685.
Liao, C. M., H. M. Liang, and S. Singh. 1998. Exposure Assessment model for odor causing VOCs volatilization from stored pig slurry. J. Environ. Sci. Health B33(4):457-486.
Liao, C. M., and H. M. Liang. 2000. Modeling effects of moisture content and advection on odor causing VOCs volatilization from stored swine manure. J. Environ. Sci. Health B35(3): 357-378.
Liao, C. M., and H. M. Liang. 2002. A linear model of the effects of residence time distribution on mixing pattern in a ventilated airspace. Building Environ: in press.
Lindstrom, F. T., L. Boersma, and H. Gardiner. 1968. 2,4-D diffusion in saturated soils: a mathetical theory. Soil Sci. 106: 107-113.
Linnainmaa, M., K. Louhelainen, and T. Eskelinen. 1993. Effect of ventilation on ammonia levels in cowhouses. Am. Ind. Hyg. Assoc. J. 54(11): 678-682.
Little, J. C., J. M. Daisey, and W. W. Nazaroff. 1992. Transport of subsurface contaminants into buildings. Environ. Sci. Tech. 26(11): 2058-2066.
Liu, Q., S. J. Hoff, G. M. Maxwell, and D. S. Bundy. 1996. Comparison of three k-epsilon turbulence models for predicting ventilation air jets. Trans. ASAE 39(2): 689-698.
Louhelainen, K., J. Kangas, A. Veijanen, and P. Viilos. 2001. Effect of in situ composting on reducing offensive odors and volatile organic compounds in swineries. AIHAJ 62(2): 159-167.
Lu, W., A. T. Howarth, N. Adam, and S. B. Riffat. 1996. Modelling and measurement of airflow and aerosol particle distribution in a ventilated two-zone chamber. Building Environ. 31(5): 417-423.
Maghirang, R. G., and H. B. Manbeck. 1993. Modeling particle transport in slot-inlet ventilated airspaces. Trans. ASAE 36(5): 1449-1460.
Martensson, L., M. Magnusson, Y. Shen, and J. A. Jonsson. 1999. Air concentrations of volatile organic acids in confined animal buildings-determination with ion chromatography. Agric. Ecosystems Environ. 75(1-2): 101-108.
McCrory, D. F., and P. J. Hobbs. 2001. Additives to reduce ammonia and odor emissions from livestock wastes: A review. J. Environ. Qual. 30(2): 345-355.
McCubbin, D. R., B. J. Apelberg, S. Roe, and F. Divita. 2002. Livestock ammonia management and particulate-related health benefits. Environ. Sci. Tech. 36(6): 1141-1146.
Merkel, J. A., T. E. Hazen, and J. R. Miner. 1969. Identification of gases in a confinement swine building atmosphere. Trans. ASAE 12(3):310-315.
Midwest Plan Services (MWPS). 1983. Structures and Environment Handbook, MWPS-1, Midwest Plan Services, Iowa State University, Ames, IA, pp. 701.1-701.4.
Millington, R. J., and J. M. Quirk. 1961. Permeability of porous solids. Trans. Faraday Soc. 57: 1200-1207.
Muehling, A. J. 1970. Gases and odors from stored swine waste. J. Anim. Sci. 30: 526-530.
Nazaroff, W. W., and G. R. Cass. 1989. Mathematical modeling of indoor aerosol dynamics. Environ. Sci. Tech. 23(2): 157-166.
Ni, J. Q., J. Hendriks, C. Vinckier, and J. Coenegrachts. 2000. Development and validation of a dynamic mathematical model of ammonia release in pig house. Environ. Int. 26 (1-2): 105-115.
Nicas, M. 1996. Estimating exposure intensity in an imperfectly mixed room. AIHA J. 57(6): 542-550.
Oddson, J. K., J. Letey, and L. V . Weeks. 1970. Predicted distribution of organic chemicals in solution and adsorbed as a function of position and time for various chemicals and soil poperties. Soil Sci. Soc. of Am. Proc. 34: 412-417.
Olander, L., J. M. Dessagne, F. Bonthoux, and J. P. Leclerc. 1995. A study of general ventilation and local exhaust ventilation in industrial premises using residence time distribution theory. Environ. Prog. 14(3): 159-163.
Olesen, J. E., and S. G. Sommer. 1993. Modeling effects of wind-speed and surface cover on ammonia volatilization from pig slurry. Atmos. Environ. 27(16): 2567-2574.
O''Neill, D. H., I. W. Stewart, and V. R. Phillips. 1992. A review of the control of odour nuisance from livestock buildings: Part 2, The costs of odour abatement systems predicted from ventilation requirements. J. Agric. Eng. Res. 51(3): 157-165.
Puma, M. C., R. G. Maghirang, M. H. Hosni, and L. J. Hagen. 1999a. Modeling dust concentration distribution in a swine house under isothermal conditions. Trans. ASAE 42(6): 1811-1821.
Puma, M. C., R.G. Maghirang, M. H. Hosni, and L. J. Hagen. 1999b. Modeling of dust concentration distribution in a simulated swine room under non-isothermal conditions. Trans. ASAE 42(6): 1823-1832.
Puma, M. C., and R. G. Maghirang. 2000. A macroscopic model for predicting dust concentration distribution in swine buildings. Indoor Built Environ. 9(3-4): 182-191.
Randall, J. M. 1973. Air distribution in a full-scale section of a livestock building. Part 1. N. I. A. E. Dep. Note DN/FB/319/3020. Natl. Inst. Agric. Eng., Silsoe.
Reynolds, S. J., K. J. Donham, P. Whitten, J. A. Merchant, L. F. Burmeister, and W. J. Popendorf. 1996. Longitudinal evaluation of dose-response relationships for environmental exposures and pulmonary function in swine production workers. Am. J. Ind. Med. 29(1): 33-40.
Schiffman, S. S., J. L. Bennett, and J. H. Raymer. 2001. Quantification of odors and odorants from swine operations in North Carolina. Agric Forest Meterol 108(3): 213-240.
Thibodeaux, L. J. 1996. Environmental Chemodynamics. 2nd Edn., John Wiley & Sons, New York. pp. 554-558.
U. S. Environmental Protection Agency. 1992. Integrated Information System (IRIS). National Library of Medicine, Washington, D. C.
van der Molen, J., A. C. M. Beljaars, W. J. Chardon, W. A. Jury, and H. G. van Faassen. 1990. Ammonia volatilization from arable land after application of cattle slurry. 2. Derivation of a transfer model. Neth. J. Agric. Sci. 38(3): 239-254.
van Genuchten, M. Th., J. M. Davidson , and P. J. Wierenga. 1974. An evaluation of kinetic and equilibrium equations for the prediction of pesticide movement through porous media. Soil Sci. Soc. Am. Proc. 38: 29-34.
Weber, W. J., and F. A. DiGiano. 1995. Process Dynamics in Environmental Systems. John Wiley & Sons, New York. pp.321-422.
West, D. L. 1977. Contaminant dispersal and dilution in a ventilated space. Trans. Am. Soc. Heat. Vent. Refrig. Eng. 83(1): 125-140.
Wiles, M. C., D. L. Elwell, H. M. Keener, J. C. Amburgey, D. C. Borger, and L. B. Willett. 2001. Volatile fatty acid emission during composting of swine waste amended with sawdust as a measure of odor potential. Compost Sci. Utilization 9(1): 27-37.
Yasuhara, A., K. Fuwa, and M. J. Jimbu. 1983. Isolation and analysis of odorous compounds in swine manure. J. Chromat. 281: 225-236.
Zahn, J. A., J. L. Hatfield, Y. S. Do, A. A. DiSpirito, D. A. Laird, and R. L. Pfeiffer. 1997. Characterization of volatile organic emissions and wastes from a swine production facility. J. Environ. Qual. 26(6): 1687-1696.
Zhang, R. H., and D. L. Day. 1996. Anaerobic decomposition of swine manure and ammonia generation in a deep pit. Trans. ASAE 39(5): 1811-1815.
Zhu, J. 2000. A review of microbiology in swine manure odor control Agric. Ecosystem Environ. 78(2): 93-106.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張志學(1999)。中國人的人際關係認知:一項多維度的研究。「本土心理學研究」,12期,261-288。
2. 莊耀嘉、楊國樞(1997)。角色規範的認知結構。「本土心理學研究」,7期,282-338。
3. 4.徐享崑,2000,二十一世紀台灣地區水資源永續發展的政策與措施,水資源管理季刊(5),中華水資源管理學會,pp.10;pp.12 (9-22)
4. 6.施孫富,1993,未來台灣水資源之開發與管理,臺灣水利季刊,第41卷第2期,pp.28 (27-34)
5. 17.陳增鐳,1967,中日美三國水權法令之探討,法學叢刊,第45期,第12卷第1期,pp.70;pp.63-65;pp.71-72 (59-72)
6. 19.吳進錩,1992,台灣農田水利事業興衰蛻變之探討,臺灣水利季刊,第四十卷,第四期,pp.85 (74-107)
7. 24.張俊生,1968,論水利法規之修正,法學叢刊,第52期,第13卷第4期,pp.58 (53-60)
8. 30.林柏璋、甘俊二,1995,農業設備投資低落與逆選擇權之研究--水利法第二十二條之探討,臺灣水利季刊,第43卷第3期,pp.41 (35-41)
9. 1.陳增鐳,1967,中日美三國水權法令之探討,法學叢刊,第45期,第12卷第1期,pp.59;pp.59 (59-72)
10. 8.李惠宗,1989,公物利用之類型及其法律性質之探討,經社法制論叢,第4期,pp.211;pp.204;pp.205;pp.206;pp.206;pp.206-207;pp.207;pp.207-208;pp.210摘錄引自原龍之助(pp.276);pp.211摘錄引自原龍之助(pp.313);pp.221(195-222)
11. 17.張公傑,1966,水利法規問題之研究,法學叢刊,第43期,第11卷第3期,pp.74(67-74)
12. 18.張俊生,1968,論水利法規之修正,法學叢刊,第52期,第13卷第4期,pp.58-59(53-60)
13. 21.陳增鐳,1967,中日美三國水權法令之探討,法學叢刊,第45期,第12卷第1期,pp.59(59-72)
14. 1.林柏璋、甘俊二,1995,農業設備投資低落與逆選擇之研究-水利法第二十二條之探討,臺灣水利季刊,第43卷,第3期,pp.35-41
15. 2.林柏璋、甘俊二,1996,水利法第二十二條修訂建議,臺灣水利季刊,第44卷,第2期,pp.54-62
 
系統版面圖檔 系統版面圖檔