(3.235.108.188) 您好!臺灣時間:2021/02/28 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐卉明
研究生(外文):Hui-Ming Hsu
論文名稱:有機肥料不同的施用量對溫室蔬菜生長與養分吸收的影響
論文名稱(外文):Effects of Different Application Rates of Organic Fertilizer on the Growth and Nutrient Uptake of Vegetables in Greenhouse
指導教授:鍾仁賜鍾仁賜引用關係
指導教授(外文):Ren-Shih Chung, Ph. D.
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:105
中文關鍵詞:小白菜葉萵苣莧菜蕹菜有機肥料氮組成
外文關鍵詞:Pak-choileafy lettuceamaranthwater convolvulusorganic fertilizernitrogen
相關次數:
  • 被引用被引用:22
  • 點閱點閱:1051
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:293
  • 收藏至我的研究室書目清單書目收藏:1
由於社會愈進步,人們環保意識抬頭,所以越注重以環境為導向的有機農業,然而和化學肥料一樣,有機肥料的使用不當也會對環境造成衝擊。因此,在高雄改良場探討有機肥料不同的施用量對蔬菜生長與養分吸收的影響。試驗於 PE 布網室設施內進行,採四種不同有機肥料用量處理 (每三個月每公頃 170、340、510、680 公斤氮),以化學肥料區及不施肥區為對照,2001 年 2 月後堆肥區用量改為每期每公頃 70、140、210、280 公斤氮。栽培之蔬菜作物包括五種小白菜 (鳳山、三鳳二號、鳳珍、尼龍、青芳白菜)、二種葉萵苣 (彩葉萵苣及亮葉萵苣)、二種莧菜 (紅莧及白莧菜) 及二種蕹菜 (桃改一號及竹葉種)。作物於具商品價值時採收,經烘乾後,分析植物體之氮組成 (包括總氮、硝酸態氮、可溶性還原態氮與不溶性氮) 及磷、鉀、鈣、鎂、鐵、錳與鋅之濃度。此外,於 2000 年 9 月 27 日、11 月 6 日及 2001 年 1 月 30 日、7 月 11 日採集各試區表層土壤,並分析其 pH 值、飽和水導電度、有機質、銨態氮、硝酸態氮、Bray-1 磷、Mehlich Ⅲ萃取之鉀、鈣、鎂、鐵、錳及鋅。
試驗結果顯示,不同種及不同品系的蔬菜對相同有機肥料的反應各異,故其植體乾重和養分濃度都有所差異。但整體而言,在土壤肥力不低的情形下,施用低量植物性有機肥料 (70 kg N ha-1 或 140 kg N ha-1) 時,其植體乾物質產量即和化學肥料處理相近。各蔬菜之總氮、磷、鉀濃度及吸收量皆隨有機肥料施用量的增加而漸增,但不同蔬菜或不同品系其增加幅度各異。不同用量有機肥料處理之葉萵苣及莧菜其硝酸態氮濃度顯著低於化學肥料處理者,小白菜及蕹菜則依有機肥料施用量而定。而植體錳、鋅濃度和吸收量也皆以有機肥料處理顯著低於化學肥料處理者,顯示土壤中有機物的增加,具有減少作物吸收微量金屬元素的作用。此外,土壤 EC 值、有機質、硝酸態氮、Bray-1 磷、可萃取性鉀、鈣、鎂都隨有機肥料施用量之增加而提高,且可萃取性鈣、鎂隨連續施用而有累積現象,但銨態氮、可萃取性鐵、錳、鋅並不影響,且化學肥料處理之土壤可萃取性錳、鋅濃度顯著高於其他處理,此應與土壤 pH 有關。因此,以生產成本及環境生態的觀點來看,蔬菜有機肥的施用需適量,以免資源浪費又破壞環境品質。
Organic farming has received more and more attention from environmentalists, asriculturists, and consumers in recent years. However, just as chemical fertilizers, improperly use of organic fertilizers would cause a great impact on the environment. The purposes of this study were to investigate the effects of the different application rates of organic fertilizer on the vegetable growth and nutrient uptake. The experimental site was located in Chishan, Kaohsiung County, southern Taiwan. The experiments were conducted in greenhouse. There were six treatments including four different application rates of the organic fertilizer treated-plots (170, 340, 510, and 680 kg N ha-1 per three crops), a no fertilizer treated control, and a chemical fertilizer-treated plot. The application rates of the organic fertilizer were 70, 140, 210, and 280 kg N ha-1 per crop, respectively, after February 2001. The vegetables cultivated included five cultivars of Pak-choi (Fongshan, Sangfong No. 2, Niling, Chingfang, and Fongjen), two cultivars of leafy lettuce (colored-leaf and bright-leaf), two cultivars of amaranth (red-leaf and white-leaf), and two cultivars of water convolvulus (Toagai No. 1 and Juyeh), respectively. The vegetables were sampled when they reached marketable size. After being drying to constant weight at 65℃, the concentrations of total nitrogen, nitrate nitrogen, soluble reduced nitrogen, insoluble nitrogen, phosphorus, potassium, calcium, magnesium, iron, manganese, and zinc were analyzed. The topsoil was also sampled on Sep. 27, 2000, Nov. 6, 2000, Jan. 30, 2001, and July 11, 2001 after the vegetable was harvested. The pH, electrical conductivity of saturation extract, organic matter, and the concentration of ammonium nitrogen, nitrate nitrogen, Bray-1 extractable P, Mehlich Ⅲ exchangeable potassium, calcim, magnesium, iron, manganese, and zinc of the soil were all determined.
The results indicated that the response of vegetables of different kinds and different cultivars to the same organic fertilizer was different. However, the dry matter yields of the low application rates of organic fertilizer (70 kg N ha-1 or 140 kg N ha-1) were similar to that of the chemical fertilizer-treated one. The concentration and uptake of nitrogen, phosphorus, and potassium of the vegetables increased with the increasing application rates of the organic fertilizer, but in different degree with different vegetables or different cultivars. The nitrate concentrations of the different rates of organic fertilizer-treated leafy lettuce and the amaranth were significantly lower than those of the chemical fertilizer-treated ones, however, the nitrate concentrations of the Pak-choi and the water convolvulus depended on the application rates of the organic fertilizer. The concentrations of manganese and zinc of all vegetables treated with organic fertilizer were significantly lower than those of the chemical fertilizer-treated ones. This meant that the uptake of heavy metal by crops reduced when the soil organic matter content increased. The electrical conductivity of saturation extract, organic matter content and the concentration of nitrate nitrogen, Bray-1 P, Mehlich Ⅲ exchangeable potassium, calcim, and magnesium of soil increased with the increasing application rates of the organic fertilizer. However, the concentrations of ammonium nitrogen, Mehlich Ⅲ exchangeable iron, manganese, and zinc in the soil were not affected by the organic matter content of the soil. Besides, the concentrations of exchangeable soil manganese and zinc of chemical fertilizer-treated plots were significantly higher than those of organic fertilizer-treated ones. This is possibly due to differing in soil pH. In summary, from the point of view of environmental ecology and economics, the application rate of the organic fertilizer should be appropriate.
目錄
頁次
摘要 ----------------------------------------------------------------------------- Ⅰ
Abstract ------------------------------------------------------------------------- Ⅲ
目錄 ----------------------------------------------------------------------------- Ⅵ
表目錄 -------------------------------------------------------------------------- Ⅶ
圖目錄 -------------------------------------------------------------------------- Ⅸ
前言 ------------------------------------------------------------------------------- 1
前人研究 ------------------------------------------------------------------------- 2
材料與方法 ---------------------------------------------------------------------- 9
結果與討論 -------------------------------------------------------------------- 20
一、 不同用量有機質肥料施用後對土壤理化性質的影響 ----------- 20
二、 不同用量有機質肥料對不同蔬菜生長與養分吸收的影響 ----- 31
(一) 小白菜 -------------------------------------------------------------------- 31
(二) 葉萵苣 -------------------------------------------------------------------- 61
(三) 莧菜 ----------------------------------------------------------------------- 71
(四) 蕹菜 ----------------------------------------------------------------------- 79
(五) 小白菜、葉萵苣、莧菜及蕹菜之植體養分濃度比較 -------------- 93
結論 ----------------------------------------------------------------------------- 95
參考文獻 ----------------------------------------------------------------------- 97
王三太、林深林、張武男、蕭吉雄。1998。不同萵苣栽培品種間的硝酸態氮含量調查。中華農業研究,47:63-70。
王銀波、趙震慶。1995。有機及化肥法下土壤環境及養分收支比較。有機物使用技術改進研究試驗報告,pp. 197-234。台灣省政府農林廳,南投,台灣。
王鐘和、林毓雯、林木連、邱麗蓉。2000。有機肥料在蔬菜栽培上之施用技術。有機質肥料合理化施用技術研討會專集,pp. 119-128。行政院農委會農業試驗所,台中,台灣。
何念祖、孟賜福。1987。植物營養原理。上海科學技術出版社。
吳正宗。1989。夏季小白菜水耕液配方及管理技術之研擬。國立中興大學土壤學研究所碩士論文,台中,台灣。
胡昌熾。1966。蔬菜學各論。國立台灣大學教科書,台北,台灣。
倪禮豐。1994。有機肥料及採收時間對青梗白菜及介藍菜氮組成的影響。國立台灣大學農業化學研究所碩士論文,台北,台灣。
黃涵、洪立。1988。台灣蔬菜彩色圖說。國立台灣大學園藝系編印,台北,台灣。
莊作權、楊明富。1992。水稻-田菁-玉米輪作制度下施用堆肥對土壤肥力的影響。中國農業化學會誌,30:553-568。
盛澄淵。1956。肥料學。國立編譯館出版。
陳秀卿、林金和。1983。高等植物氮素的代謝生理(二)光與高等植物之硝酸鹽代謝作用。科學農業,31:61-66。
張淑賢。1981。本省現行植物分析法。作物需肥診斷技術,pp. 53-59。台灣省農業試驗所,台中,台灣。
張簡秀容、馮永富。1996。有機肥料對不同葉菜類硝酸鹽含量之影響。桃園農業改良場研究報告第 21 號,pp. 7-19。桃園區農業改良場,桃園,台灣。
張簡秀容。葉萵苣栽培管理。1999。台灣農業,35:68-71。
張庚鵬、張愛華。1997。蔬菜作物營養診斷圖鑑。台灣省農業試驗所,台中,台灣。
楊明富。1991。水蹈、玉米輪作制度下施用堆肥對土壤肥力及作物產量之影響。國立中興大學碩士論文,台中,台灣。
蔡素蕙、黃山內、楊秋忠。1992。有機及化學肥料對小白菜生長、硝酸態氮及維生素含量的影響。中華農學會報,158:77-85。
蔡永皞。1993。施用雞糞堆肥對轉作田土壤及作物氮素動態之影響。土壤肥料試驗研討會專集,pp. 183-193。台灣省政府農林廳,南投,台灣。
蔡宜峰。1999。禽畜糞堆肥對作物生長及土壤特性的影響。農業有機廢棄物處理與應用,pp. 75-87。中華生質能源學會,台北,台灣。
鄧耀宗、黃伯恩。1993。台灣永續農業之現況與展望。永續農業研討會專集,pp. 1-8。台中區農業改良場,台中,台灣。
鍾仁賜、翁弘明。1998。有機肥料對蔬菜生長及氮組成與土壤肥力的影響。農產廢棄物在有機農業應用研討會專刊,pp. 136-164。桃園區農業改良場,桃園,台灣。
鍾仁賜、葉美雲、張則周。1994。酸性土壤中施用有機物對作物生長之影響及鋁、錳解毒作物。台灣東部問題土壤改良研討會論文集,pp. 179-197。台灣省花蓮區農業改良場,花蓮,台灣。
謝仁哲。2000。兩種輪作制度下經十一年連續施用不同肥料之土壤養分釋放。國立台灣大學農業化學系碩士論文,台北,台灣。
譚鎮中、王銀波、李振洲。1998。施用有機肥料對蔬果中硝酸與銅鋅含量之影響。農產廢棄物在有機農業應用研討會專刊,pp. 129-135。桃園區農業改良場,桃園,台灣。
Allen, S. and J. A. C. Smith. 1986. Ammonium nutrition in Ricnus communis: Its effect on plant growth and the chemical compositions of the whole plant, xylem and phloem saps. J. Exp. Bot. 37: 1599-1610.
Association of Official Analytical Chemists. 1970. Official Methods of Analysis, 12th Ed., Sec. 2. pp. 204.
Ball, D. F. 1964. Loss-on ignition as estumate of organic matter and organic carbon in non-calcareous soils. J. Soil Sci. 15: 84-92.
Barker, A. V., R. J. Volk, and W. A. Jackson. 1966. Root environment acidity as a regulatory factor in ammonium assimilation by the bean plant. Plant Physoil. 41: 1193-1199.
Bationo, A. and A. U. Mokwunye. 1991. Role of manures and crop residue in alleviating soil fertility constraints to crop production: With special reference to the Sahelian and Sudanian zones of West Africa. Fertilizer Research 29: 117-125.
Bauer, A. and A. L. Black. 1994. Quantification of the effect of soil organic matter content on soil productivity. Soil Sci Soc. Am. J. 58: 185-193.
Bear, F. E. and S. J. Toth. 1942. Phosphate fixation in soil and its practical control. Indus. Eng. Chem. 34: 49-52.
Blacquiere, T., R. Hofstra, and I. Stulen. 1987. Ammonium and nitrate nutrition in Plantago lanceolata and Plantago major L. ssp. major. Ⅰ. Aspects of growth, chemical composition and root respiration. Plant Soil 104: 129-141.
Bremner, J. M. and C. S. Mulvaney. 1982. Salicylic acid-thiosulfate modification on Kjeldahl method to include nitrate and nitrite. pp. 621-622. In “Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.), Academic Press, New York.
Broaddus, G. M., J. E. York, and J. M. Hoseley. 1965. Factors affecting the levels of nitrate nitrogen in cured tobacco leaves. Tob. Sci. 9: 149-157.
Chang, C., T. G. Sommerfeldt, and T. Entz. 1991. Soil chemistry after eleven annual application of cattle feelot manure. J. Environ. Qual. 20: 475-481.
Chung, R. S. and F. N. Wang. 2000. Effect of different composts on growth and nitrogen composition of Chinese mustard in an acid red soil. Commun. Soil Sci. Plant Anal. 31: 1209-1224.
Davies, B. E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. Proc. 38: 150-151.
Fortun, A., C. Fortun, and C. Ortega. 1989. Effect of farmyard manure and its humic farctions on the aggregate sability of a sandy loam soil. J. Soil Sci. 40: 293-298
Franceschi, V. R. and H. T. Horner. 1980. Calcium oxalate crystals in plants. Bot. Rev. 46: 361-427.
Frances, R. L. 1991. Chemical reactions of metal with humic material. Environ. Poll. 70: 185-208.
Harada, T., H. Talaki, and Y. Yamada. 1986. Effect of nitrogen sources on the chemical components of young plants. Soil Sci. Plant Anal. 14: 47-52.
Harada, Y. 1990. Composting and application of animal waste. ASPAC/FFTC Extension Bulletin 311: 19-30.
Haynes, R. J. 1986. The decomposition process: Mineralization, immobilization, humus formation, and degradation. pp. 52-109. In “Mineral Nitrogen in the Plant-Soil System” Haynes (ed.), Academic Press, New York.
Helyar, K. K. and W. M. Proter. 1989. Soil acidification its measurement and the processes involved. pp. 61-101. In “Soil Acidity and Plant Growth” Roboson A. D. (ed.), Academic Press, New York.
Hendrix, P. F., D. C. Colema, and D. A. Crossley. 1992. Using knowledge of soil nutrient cycling processes to design sustainable agriculture. Integrating Sustainable Agriculture, Ecology, and Environmental Policy 2: 63-82.
Heuer, B. 1991. Growth, photosynthesis and protein content in cucumber plants as affected by supplied nitrogen form. J. Plant Nutr. 14: 363-373.
Hue, N. V., I. Amen, and J. Hansen. 1989. Aluminum detoxification with green manure. Commun. Soil Sci. Plant Anal. 20: 1499-1511.
Hue, N. V. 1991. Effect of organic acid/anions on P sorption and phytoavailability in soils with different mineralogies. Soil Sci. 152: 463-471.
Ikeda, H. 1991. Utilization of nitrogen by vegetable crops. JARQ 25: 117-124.
Iynegar, B. K. V., and T. N. Shivananda. 1992. Fertilizer nitrogen uptake and utilization efficiency in vegetables. J. Indian Soc. Soil Sci. 40: 469-473.
Jacobs, L. W. 1990. Pontential hazards when using organic materials as fertilizers for crop production. ASPAC/FFTC Extension Bulletin 313: 1-29.
Jenkinson, D. S. 1991. The Rothamsted long-term experiments: Are they still of use. Agron. J. 83: 2-10.
Jones, J. B. Jr. 1998. Plant Nutrition Manual. pp. 56-57. CRC Press, New York.
Jones, J. B. Jr. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. pp. 70-71. CRC Press, New York.
Kabata-Pendias, A. and H. Pendias. 1984. Aluminum. pp. 332-336. In “Trace Elements in Soils and Plants” CRC Press, Inc., Boca Raton, Florida.
Keeney, D. R. and D. W. Nelson. 1982. Modified Griess-Ilosvay method. pp. 684-687. In “Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.), Academic Press, New York.
Marchesini, A., L. Allievi, E. Coomoto, and A. Ferrari. 1988. Long-tern effects of quality-compost on soil. Plant Soil 106: 251-253.
Marschner, H. 1995. Mineral Nutrition in Higher Plants. pp. 313-364. Academic Press, New York.
Martinoia, E., U. Heck, and A. Wiemken. 1980. Vacuoles as storage compartments for nitrate barley leaves. Nature 289: 292-293.
McLean, E. O. 1982. Soil pH and lime requirement. pp. 199-224. In” Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.), Academic Press, New York.
Mehlich, A. 1985. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15: 1409-1416.
Mills, H. A. and Jones J. B. Jr. 1979. Nutrient deficiency and toxicities in plants: Nitrogen. J. Plant Nutr. 1: 101-122.
Morachan, Y. B., W. C. Moldenhauer, and W. E. Larson. 1972. Effects of increasing amounts of organic residues on continuous corn. I. Yields and soil physical properties. Agron. J. 64: 199-203.
Mortson, J. L. 1963. Compelxing of metals by soil organic matter. Soil Sci. Soc. Am. Proc. 27: 179-186.
Murphy, J. and J. P. Riley. 1962. A modified single solution for determination of phosphate in natural waters. Anal. Chem. Acta 27:31-36.
Nobel, A. D., I. Zenneck, and P. J. Randall. 1996. Leaf litter ash alkalinity and neutralization of soil acidity. Plant Soil 179: 293-302.
Parkin, J. F., R. H. Miller, and D. Colacicco. 1984. Utilization of organic materials for crop production in developed and developing countries. pp. 83-95. In “Organic Farming: Current Technology and Its Role in a Sustainable Agriculture” D. F. Bezdicek (ed.), ASA, Madison, Wisconsin.
Parry, R. 1998. Agricultural phosphorus and water quality: A U.S. Environmental Protection Agency perspective. J. Environ. Qual. 27: 258-261.
Rabenhorst, M. C. 1988. Determination of organic carbon in calcareous soils using dry combustion. Soil Sci. Soc. Am. J. 52: 965-969.
Reed, A. J., F. E. Below, and R. H. Hageman. 1980. Gain protein accumulation and the relationship between leaf nitrate reductase and protease activities during grain development in maize (Zea mays L.). Plant Physiol. 66: 164-170.
Rhoades, J. D. 1982. Soluble salts. pp. 167-178. In “Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.) Academic Press, New York.
Sahranak, K. L. 1982. Nitrification in some tropical soil. Plant Soil 65: 281-286.
Schmidt, E. L. 1982. Nitrifivation in soil. pp. 253-288. In “Nitrogen in Agricultural Soil” F. J. Stevenson (ed.), American Society of Agronomy, Madison, Wisconsin.
Shaner, D. L. and J. S. Boyer. 1976. Nitrate reductase activity in maize (Zea mays L.) leaves. Ⅱ. Regulation by nitrate flux at low leaf water potential. Plant Physoil. 58: 505-509.
Singh, B. B. and J. P. Jones. 1976. Phosphorus sorption and desorption characteristics of soil as affected by organic residue. Soil Sci. Soc. Am. Proc. 40: 389-394.
Smith, S. R. and P. Hadley. 1989. A comparison of organic and inorganic nitrogen fertilizers: Their nitrate-N and ammonium-N release characteristics and effects on the growth response of lettuce (Lactuca sative L. cv. Fortune). Plant Soil 115: 135-144.
Sommerfeldt, T. G., C. Chang, and T. Entz. 1988. Long-term annual manure applications increase soil organic matter and nitrogen, and decrease carbon to nitrogen ratio. Soil Sci. Soc. Am. J. 52: 1668-1672.
Soon, Y. K. and S. Abboud. 1991. A comparision of some methods for soil organic carbon determination. Commun. Soil Sci. Plant Anal. 22: 943-954.
Stone, D. L. R., D. A. Whitney, K. A. Janssen, and J. H. Long. 1991. Soil properties after twenty years of fertilizeration with different nitrogen sources. Soil Sci. Soc. Am. J. 55: 1097-1100.
Ulrich, B. 1991. An ecosystem approach to soil acidification. pp. 28-79. In “Soil Acidity” B. Ulrich and M. E. Sumner (ed.), Springer-Verlag, Berlin.
Vivckanandan, M. and P. E. Fixen. 1990. Effect of large manure application on soil P intensity. Commun. Soil Sci. Plant Anal. 21: 287-297.
Zocconi, F., A. Monaco, M. Forte, and M. Bertoldi. 1985. Phytotoxins during the stabilization of aoganic matter. pp. 73-86. In “Composting of Agricultural and Other Waste” J. K. R. Gasser (ed.), Elsevier, London.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 萬家春(民85)。校園意外事件之為機處理。教師天地,82,36。
2. 楊瑞珠(民87)。無懼的愛:面對死亡,活出生命。學生輔導通訊,54,28-31。
3. 刁秀英(民90)。媒體公關及危機處理面面談。教師天地,115,40。
4. 黃振球(民85)。談校園危機管理。教師天地,82,19。
5. 陳增穎(民87)。青少年的哀傷反應及其對諮商與輔導的啟示。學生輔導通訊,54,70-83。
6. 唐璽惠(民87)。校園危機處理。學生輔導雙月刊,58,.44-57。
7. 徐西森(民85)。師生關係與溝通技巧。學生輔導通訊,49,52-61。
8. 李佩怡(民87)。失落的自我調適:如何運用創意渡過悲傷。學生輔導通訊,54,84-99。
9. 吳秀碧(民87)。影響校園之死亡事件處理。學生輔導通訊,58,20-29。
10. 王千倖(民87)。建立良好的師生關係。學生輔導通訊,55,106-111。
11. 趙可式(民87)。生死教育。學生輔導通訊,54,44-51。
12. 鄭英敏(民85)。學校危機處理。教師天地,82,24。
13. 鄭宇碩,岳經綸,〈一國兩制下的中港關係〉,《遠景季刊》,第一卷第二期,2000年4月。
14. 鄭宇碩,〈香港基層組織對民主進程的影響〉,《遠景季刊》,第一卷第三期, 2000年7月。
15. 王三太、林深林、張武男、蕭吉雄。1998。不同萵苣栽培品種間的硝酸態氮含量調查。中華農業研究,47:63-70。
 
系統版面圖檔 系統版面圖檔