(44.192.112.123) 您好!臺灣時間:2021/03/06 06:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李宏明
研究生(外文):Hung-Ming Li
論文名稱:台灣森林土壤二氧化碳之釋放通量及其影響因子
論文名稱(外文):Carbon Dioxide Flux from Taiwan Forest Soils and Its Affecting Factors
指導教授:賴朝明賴朝明引用關係
指導教授(外文):Chao-Ming Lai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:台灣森林土壤二氧化碳通量密閉罩法
外文關鍵詞:Taiwanforestsoilcarbon dioxidefluxclosed chamber methed
相關次數:
  • 被引用被引用:7
  • 點閱點閱:172
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本研究目的為以兩種密閉罩法推估台灣森林土壤CO2釋出通量,並探究影響森林土壤CO2釋出通量之因子,進而供作大氣中CO2減量之參考。本研究試驗地點位於農委會林業試驗所褔山分所及六龜分所之試驗林,兩處皆以兩種密閉罩測定土壤CO2釋放通量變化。
結果顯示:以密閉罩法一測得1999年3月至2002年4月之褔山及六龜試驗林土壤CO2之釋放通量,褔山一號及二號集水區森林土壤CO2之釋放通量分別為0.038∼0.29 g CO2 m-2 hr-1 (平均為0.14 ± 0.08 g CO2 m-2 hr-1)及0.064∼0.27 g CO2 m-2 hr-1(平均為0.14 ± 0.07 g CO2 m-2 hr-1),六龜試驗林人工林及天然林森林土壤CO2之釋放通量分別為0.18∼0.59 g CO2 m-2 hr-1 (平均為0.32 ± 0.13 g CO2 m-2 hr-1)及0.17∼0.58 g CO2 m-2 hr-1 (平均為0.34 ± 0.14 g CO2 m-2 hr-1)。以密閉罩法二測得2001年6月至2002年4月之褔山及六龜試驗林土壤CO2釋放通量結果,褔山一號及二號集水區土壤CO2之釋放通量分別為0.18∼0.70 g CO2 m-2 hr-1 (平均為0.45 ± 0.18 g CO2 m-2 hr-1)及0.34∼0.62 g CO2 m-2 hr-1(平均為0.48 ± 0.10 g CO2 m-2 hr-1),六龜試驗林人工林及天然林森林土壤CO2之釋放通量分別為0.31∼0.91 g CO2 m-2 hr-1(平均為0.62 ± 0.23 g CO2 m-2 hr-1)及0.43∼1.0 g CO2 m-2 hr-1(平均為0.72 ± 0.21 g CO2 m-2 hr-1)。兩種密閉罩法之測值有極顯著之正相關(P < 0.001)。如以簡單相關分析探究影響森林土壤CO2釋放通量因子之結果顯示:土壤CO2釋放通量與表土溫度呈顯著之正相關(P < 0.05)。另外逐步迴歸分析之結果亦顯示,影響土壤CO2釋放通量之主要因子為表土溫度。又於2001年1月18日至5月17日及2002年2月28日至3月31日間,以CO2分析儀連續監測六龜試驗林人工林及天然林大氣CO2濃度之結果顯示:2001年人工林大氣CO2濃度比天然林低約17 ppm,2002年則低約6 ppm;此等結果亦顯示:「人工造林」對減少大氣中CO2之濃度的影響值得進一步研究。
The objectives of this study were to estimate the soil CO2 fluxes of Taiwan forest by two closed chamber methods and examine their affecting factors. The experimental forests of Taiwan Forestry Research Institute in Fu-Shan and Liu-Kuei were selected to monitor the changes of soil CO2 fluxes by two closed chamber methods.
The results showed that the soil CO2 fluxes by closed chamber method I from Watershed I and II in Fu-Shan ranged from 0.038 to 0.29 g CO2 m-2 hr-1 (mean value 0.14 ±0.08) and from 0.064 to 0.27 g CO2 m-2 hr-1(mean value 0.14 ±0.07), respectively; those in plantation and native forests in Liu-Kuei ranged from 0.18 to 0.59 g CO2 m-2 hr-1(mean value 0.32 ±0.13) and from 0.17 to 0.58 g CO2 m-2 hr-1(mean value 0.34 ±0.14), respectively. The soil CO2 fluxes by closed chamber method II from Watershed I and II in Fu-Shan ranged from 0.18 to 0.70 g CO2 m-2 hr-1(mean value 0.45 ±0.18) and from 0.34 to 0.62 g CO2 m-2 hr-1(mean value 0.48 ±0.10), respectively; those in plantation and native forests in Liu-Kuei ranged from 0.31 to 0.91 g CO2 m-2 hr-1(mean value 0.62 ±0.23) and from 0.43 to 1.0 g CO2 m-2 hr-1(mean value 0.72 ±0.21), respectively. There was a significant close relationship between the results of the two chamber methods. The result of the simple correlation analysis showed that there was a close relationship between soil temperature and soil CO2 flux. The result of the stepwise regression analysis showed that only soil temperature among affecting factors could significantly influence the soil CO2 flux. The result also showed that the atmospheric CO2 concentration for 5.0 m height in plantation forest was lower than that in native forest (ca. 17 ppm) from Jan. 1 to May 17, 2001, and the CO2 atmospheric concentration for 5.0 m height in plantation forest was also lower than that in native forest (ca. 6 ppm) from Feb. 28 to Mar. 31, 2002. It suggested that “plantation forest” could reduce the atmospheric CO2 concentration and needs to be further studied.
中文摘要 ---------------------------------------------------- I
ABSTRACT ---------------------------------------------------- Ⅲ
目錄 -------------------------------------------------------- Ⅳ
表目錄 ----------------------------------------------------- Ⅵ
圖目錄 ------------------------------------------------------ Ⅷ
附錄表 ------------------------------------------------------ Ⅸ
前言 -------------------------------------------------------- 1
材料與方法 ------------------------------------------------- 7
一、研究地點 ------------------------------------------------ 7
二、森林土壤二氧碳釋出通量之估測方法 ------------------------ 14
三、環境背景之量測 ------------------------------------------ 17
四、「二氧化碳」檢測數據之品質保證 -------------------------- 18
五、土壤樣品之採集、製備及分析 ------------------------------ 19
六、林內及林外二氧化碳濃度之比較 ---------------------------- 22
七、統計分析方法 ------------------------------------------- 22
結果與討論 ------------------------------------------------- 23
一、二氧化碳檢測數據之品質保證 ----------------------------- 23
二、褔山及六龜試驗林土壤之理化性質及其季節性變化 ------------ 24
三、密閉罩法一測得褔山及六龜試驗林土壤之二氧化碳釋出通量 ---- 24
四、密閉罩法二測得褔山及六龜試驗林土壤之二氧化碳釋出通量 ---- 39
五、密閉罩法一及密閉罩法二測得土壤二氧化碳釋出通量之比
較 ----------------------------------------------------- 46
六、自架自動監測儀器連續測定褔山及六龜試驗林之氣溫、土溫
、土壤水分與大氣中之二氧化碳濃度 ------------------------ 50
七、六龜試驗林人工林及天然林大氣中二氧化碳之比較 ------------ 55
八、褔山及六龜試驗林林外與林內大氣中二氧化碳量變化 ---------- 57
九、森林土壤二氧化碳釋出通量之模式 ------------------------- 62
結論 ------------------------------------------------------- 66
參考文獻 --------------------------------------------------- 68
附錄 ------------------------------------------------------- 77
王立志。1996。氣候變遷對台灣林業的衝擊與適應。p.215-229。氣候變遷衝擊評估與因應策略建議研討會。研討會論文集5月2日-5月3日。1996。台大全球變遷中心。台北。
王明光、賴朝明。1998。林業溫室氣體排放資料庫之建立及更新(I)。行政院農業委員會專題研究計畫作果報告。台北市。
王明光、賴朝明。1999。林業溫室氣體排放資料庫之建立及更新(II)。行政院農業委員會專題研究計畫作果報告。台北市。
王明光、賴朝明。2000。林業溫室氣體排放資料庫之建立及更新(III)。行政院農業委員會專題研究計畫作果報告。台北市。
王明光、賴朝明。2001。林業溫室氣體排放資料庫之建立及更新(IV)。行政院農業委員會專題研究計畫作果報告。台北市。
台灣省林業試驗所。1997。林業試驗所六龜分所氣象資料。林業叢刊第89號。台北市。
台灣省林業試驗所。2000。林業試驗所褔山分所氣象水文資料。林業叢刊第121號。台北市。
丘依樞。1994。探討森林對溫室效應之控制。中國環保雜誌。18:16-19。
李國忠、林俊成、陳麗琴。2000。台灣杉人工林碳吸存潛力其成本效益分析。台灣林業科學。15:115-123。
林則桐、馬復京、張乃航。1995。褔山試驗林的植物社會與天然更新的研究。林業試驗所百週年慶學術研討會論文集。第71-82頁。
柳中明、李國忠、林俊全、劉育慈。2001。造林復林對台灣環境二氧化碳減量之貢獻。全球變遷通訊第三十一期。第1-21頁。
楊榮啟、馮豐隆、黃俊維。1998。林業對溫室氣體減量策略規劃及衝擊評估(二)期末報告。共121頁。
楊盛行。1997。台灣地區森林二氧化碳之涵容量計算。中華生質能源協會會誌。16:1-10。
賴朝明。1996。台灣北部濕地、旱地及蔬菜園氧化亞氮之釋放及其影響因行政院國科會專題計畫成果報告。台北市。
賴朝明。1998a。農田土壤氧化亞氮釋出之檢量對策。溫室氣體通量測定及減量對策。第112-127頁。
賴朝明。1998b。氧化亞氮測定方法。在”畜牧溫室氣體測定講習會論文暨講義集(二)實習操作”中,第14-22頁,台大全球變遷研究中心,台北市。
環境檢驗所。1992。檢測方法:空氣中氯乙烯單體檢驗法一採樣袋/填充管柱氣層析法環署檢字第50543號公告NIEA A805.10T。
蘇鴻傑。1977。台灣北部烏來小集水區闊葉樹林群落生態之研究(二)-地形與樹木分佈型式及其取樣方法之關係。台大實驗林研究報告119:201-215。
Angell, R. F., T. Svejcar, J. Bates, N. Z. Saliendra and D. A. Johnson. 2001. Bowen ratio and closed chamber carbon dioxide flux measurements over sagebrush steppe vegetation. Agric. Forest Meteorol. 108:153-161.
Arneth, A., F. M. Kelliher, S. T. Gower, N. A. Scott, J. N. Byers and T. M. Mcseveny. 1998. Environmental variables regulating soil carbon dioxide efflux following clear-cutting of a Pinus radiata D Don plantation. J. Geophys. Res. 103:5696—5707.
Aubient, M., A. Grelle, A.Ibrom, U. Rannik, J. Moncrieff, T. Foken. 2000. Estimates of the annual net carbon and water exchange of forests:the EUROFLUX methodology. Adv. Ecol. Res. 30:113-175.
Baldocchi, D. D. 1997. Measuring and modeling carbon dioxide and water vapour exchange over a temperate broadleaved forest during the 1995 summer drought. Plant cell Environ. 20:1108-1122.
Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-Total. P. 595-624. In A. L.Page et al. (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. SSSA. No. 9., Madison, WI.
Bremner, J. M., and D. R. Keeney. 1966. Determination and isotope-ratio analysis of different froms nitrogen in soils : 3. Exchangeable ammonium, nitrate and nitrite by extraction-distillation method. Soil Sci. Soc. Am. Proc. 30:577-582.
Davidson, E. A., E. Belk, R. D. Boone. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol. 4:217-227.
Denmead, O. T. and E. F. Bradley. 1985. Flux-gradient relationships in a forest canopy. P. 421-442. IN D. Reidel. The Forest-Atmosphere Interaction. Dordrecht, Netherlands.
Denmead, O. T. 1991. Sources and sinks of greenhouse gases in the soil-plant environment. Vegetatio. 91:73-86.
Detwiler, R. P. and C. A. S. Hall. 1988. Tropical forests and the global carbon cycle. Science. 239:42-47.
Dixon, R. K., S. Brown, R. A. Houghton, A. M. Soloomon, M. C. Trexler and J. Wisniewski. 1994. Carbon pools and flux of global forest ecosystems. Science. 263:185-190.
Edwards, N. T. 1975. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Sci. Soc. Amer. Proc. 39:361-365.
Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, P. Tans. 1998. A large terrestrial sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science. 282:422-446.
Frank, A. B., and W. A. Dugas. 2001. Carbon dioxide fluxes over a northern, semiarid, mixed-grass prairie. Agric. Forest Meteorol. 108:317-326.
Gee, G. W., and J. W. Bauder. 1986. Particle-size Analysis:Core method. P.383-411. In A.Klute et al. (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Goldstein, A. H., N. E. Hultman, M. R. Bauer, J. A. Panek, M. Xu, Y. Qi, A. B. Guenther and W. Baugh. 2000. Effect of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada(CA) . Agric. For. Meteorol. 101 : 113 — 129.
Goulden, M. L., J. W. Munger, S. M. Fan, B. C. Daube and S. C. Wofsy. 1996. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biol 2: 169.
Goulden, M. L., and P. M. Crill. 1997. Automated measurements of CO2 exchange at the moss surface of a black spruce forest. Tree Physiol. 17:537-542.
Greco, S., and D. Baldocchi.1996. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biol. 2: 183-197.
Jackson, M. L. 1962. p.240. In soil chemical analysis. Prentice-Hall, Inc., Englewood Cliffs, N. J.
Janssens, I. A., and R. Ceulemans. 1998. Spatial variability in forest soil CO2 efflux assessed with a calibrated soda lime technique. Ecol. Lett. 1:95-98.
Kellomäki, S., and K. Y. Wang. 2000. Short-term environmental controls on carbon dioxide flux in a boreal coniferous forest:model computation compared with measurements by eddy covariance. Ecological Modelling. 128:63-88.
Kimball, B. A. and E. R. Lemon., 1971. Air turbulence effects upon soil gas exchange. Soil Sci. Soc. Am. Proc. 35:16-21.
Kursar, T. A. 1989. Evaluation of soil respiration and soil CO2 concentration in a lowland moist forest in panama. Plant and soil. 113:21-29.
Law, B. E., D. D. Baldocchi, and P. M. Anthoni. 1999a. Below-canopy and soil CO2 fluxes in a ponderosa pine forest. Agric. For. Meteorol. 94:171-188.
Law, B. E., M. G. Ryan, and P. M. Anthoni. 1999b. Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biol., in press.
Law, B. E., F. M. Kelliher, D. D. Baldocchi, P. M. Anthodni, J. Irvine, D. Moore, and S. V. Tuyl. 2001. Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agric. For. Meteorol. 110:27-43.
Lloyd, J., J. A. Taylor. 1994. On the temperature dependence of soil respiration. Funct. Ecol. 8:315-323.
Lloyd, J. 1999. Current perspectives on the terrestrial carbon cycle. Tellus. 51:336-342.
Luken, J. O., W. D. Billings. 1985. The influence of microtopographic heterogeneity on carbon dioxide efflux from a subarctic bog . Holarct. Ecol. 8:306-312.
Maithani, K., R. S. Tripathi, A. Arunachalam, H. N. Pandey. 1996. Seasonal dynamics of microbial biomass C, N and P during regrowth of a disturbed subtropical humid forest in north-east India. Applied Soil Ecology. 4:31-37.
Malhi, Y., D. D. Baldocchi, P. G. Jarvis. 1999. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ. 22:715-740.
Monteith, J. L., and G. Szeicz. 1960. The carbon dioxide flux over a field fo sugar beet. Q. J. R. Meteorol. Soc. 86:205-214.
Motulsky, H. J., and L. A. Ransnas. 1987. Fitting curves to data using nonlinear regression : A practical and nonmathematical review. FASEB. 1:365-374.
Musselman, R. C., and D. G. Fox. 1991. A review of the role of temperate forests in the global CO2 balance. J. Air Waste Manage. Assoc. 41:798.
Nelson, A. M., and L. E. Sommers. 1982. Total carbon, organic carbon, organic matter. P. 539-594. In A. L.Page et al. (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. SSSA. No. 9., Madison, WI.
Norman, J. M., R. Garcia, and S. B. Verma. 1992. Soil surface CO2 fluxes and the carbon budget of grassland. J. Geophys. Res. 97:18845-18853.
Oberbauer, S. F., J. D. Tenhunen, J. F. Reynolds. 1991. Environmental effect on CO2 efflux from water track and tussock tundra in artic Alaska. U.S.A. Arct. Alp. Res. 23:162-169.
Ohashi, M., K. Gyokusen, and A. Saito. 1999. Measurement of carbon dioxide evolution form a Japanese cedar forest floor using an open-flow chamber method. For. Ecol. Manage. 123:105-114.
Pastor, J. and W. M. Post. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2:3 — 27.
Pilegaard, K., P. Hummelshoj, N. O. Jensen and Z. Chen. 2001. Two years of continuous CO2 eddy-flux measurements over a Danish beech forest. Agric. For. Meteorol. 107:29-41.
Rayment, M. B., P. G. Jarvis. 1997. An improved open chamber system for measuring soil CO2 effluxes of a Boreal black spruce forest. J. Geophys. Res. 102:28779-28784.
Rhoades, J. D. 1982. Cation exchange capacity. P. 149-157. Methods of soil analysis. Part 2. Chemical and microbiological properties. SSSA. No. 9., Madison, WI.
Rolston, D. E., D. L. Hoffman and D. W. Toy. 1978. Field measurement of denitrification:I. Flux of N2 and N2O. Soil Sci. Soc. Am. J. 42:863-869.
Rolston, D. E. 1986. Gas flux. In A. Klute (ed.) Methods of soil Analysis, pt. 1, 2nd ed. Agron. Monogr. 9. ASA and SSSA, madison, WI.
Running, S. W. and R. R. Nemani. 1991. Regional hydrologic and carbon balance responses of forest resulting from potential climate chang. Clim. Chang. 19:349 — 368.
Savage, K., T. R. Moore, and P. M. Crill. 1997. Methane and carbon dioxide exchanges between the atmosphere and northern boreal forest soils. J. Geophys. Res. 102:29279-29288.
Schlentner, R. E., and K. Van Cleve. 1985. Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can. J. For. Res. 15:97-106.
Sims, P. L. and J. A. Bradford. 2001. Carbon dioxide fluxes in a southern plains prairie. Agric. For. Meteorol. 109:117-134.
Singh, J. S. and S. R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Bot. Rev. 43:449-528.
Toland, D. E., and R. Z. Donald. 1994. Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests. Can. J. For.Res. 24:1711-1716.
Valentini, R., P. De Angelis, G. Matteucci, S. Monaco, S. Dore, G. E. Scarascia Mugnozza. 1996. Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. Global Change Biol. 2:199-207.
Vose, J. M., K. J. Elliott, D. W. Johnson, D. T. Tingey, and M. G. Johnson. 1997. Soil respiration response to three years of elevated CO2 and N fertilization in ponderosa pine (pinus ponderosa Doug. Ex Laws.). Plant soil. 190:19-28.
Vourlitis, G. L. and W. C. Oechel. 1999. Eddy covariance measurements of CO2 and energy fluxes of an Alaskan tussock tundra ecosystem. Ecology. 80:686-701.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔