(3.238.186.43) 您好!臺灣時間:2021/02/26 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱維貞
研究生(外文):Wei-Chen Chiu
論文名稱:可規格化通訊處理器
論文名稱(外文):Scalable Communication Processor
指導教授:陳光禎陳光禎引用關係
指導教授(外文):Kwang-Cheng Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:104
中文關鍵詞:正交分頻多工直接序列展頻數位音訊廣播數位視訊廣播通訊處理器
外文關鍵詞:OFDMDSSSDABDVBCommunication Processor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
隨著通訊技術的日新月異,通訊系統的設計也有著快速的發展.為了兼顧軟體實現的彈性及硬體實現的計算效能,我們提出一個可規格化的通訊處理器.此通訊處理器提供四種工作模式,包括802.11a正交分頻多工(OFDM)接收機,802.11b直接序列展頻(DSSS)接收機,數位音訊廣播(DAB)接收機,以及數位視訊廣播(DVB)接收機.
在本篇論文中,我們分析了這四種模式的運作及計算複雜度,並將其中較複雜的運算功能分類並以硬體實現,利用重複使用的方式可以降低整體的複雜度及面積大小.因此,我們所提出的通訊處理器包含了四大運算區塊,其中快速複立葉轉換(FFT)方塊,維特比(Viterbi)解碼方塊及關聯(Correlation)運算方塊是由硬體實現,而較小量的運算則交由軟體或是可程式化的硬體來處理.
此外,我們會描述並解釋正交分頻接收機及直接序列展頻接收機的設計,以及浮點運算和定點運算的模擬.經由定點運算的模擬的結果,整個通訊處理器的架構便可依此建立.

In this thesis, the design of a scalable communication processor
is presented. Four modes are defined in the processor to provide
the scalability, including 802.11a OFDM receiver, 802.11b
DSSS/PBCC receiver, DAB receiver and DVB receiver. The functions
and computation complexity in the four modes will be analyzed to
group into three hardware blocks. The categorization of the
operations reduces the whole hardware complexity by reusing the
hardware blocks.
The OFDM receiver design and the DSSS/PBCC receiver design are
both proposed in this thesis. In addition, the functional and
fixed-point simulation are performed to verify the proposed
architecture. The proposed communication processor retains both
the flexibility in software design and the computation capability
in hardware.

1 Introduction
1.1 Spread Spectrum Techniques
1.2 OFDM Techniques
1.3 Implementation Issue
1.4 Organization
2 Physical Layers in 802.11a and 11b Standard
2.1 Physical Layer Specifications in IEEE 802.11a Standard
2.1.1 Rate-Dependent Parameters
2.1.2 Timing-Related Parameters
2.1.3 Preamble Structure
2.1.4 OFDM Training Structure
2.1.5 Data Scrambler and Descrambler
2.1.6 Convolutional Encoder
2.1.7 Data Interleaving
2.1.8 Subcarrier Modulation Mapping
2.1.9 Pilot Subcarriers and OFDM Modulation
2.1.10 Channelization
2.1.11 Channel Model
2.2 Physical Layer Specifications in IEEE 802.11b Standard
2.2.1 Long PLCP PPDU Format and Field Definitions
2.2.2 PLCP/High Rate PHY Data Scrambler and Descrambler
2.2.3 DSSS/PBCC Data Modulation and Modulation Rate
3 802.11a OFDM Receiver Design
3.1 Preamble Phase
3.1.1 Frequency and Frame Synchronization
3.1.2 Channel Estimation
3.2 Payload Phase
3.2.1 Symbol Timing Synchronization
3.2.2 Synchronization Error Correction Block
3.2.3 Soft Demodulation Block
3.2.4 Viterbi Decoding Block
3.3 Simulation Result
3.3.1 Simulation Parameters
3.3.2 Simulation Result
4 DSSS/PBCC Receiver Design
4.1 Synchronization
4.2 Channel Estimation
4.3 Channel Matched Filter
4.4 Decision Feedback Equalizer
4.5 Simulation Result
4.5.1 Simulation Parameters
4.5.2 Simulation Result
5 Scalable Communication Processor Design
5.1 Basic Communication Processor Design
5.1.1 Computation Power Analysis
5.1.2 Viterbi Decoder Block Design
5.1.3 FFT Block Design
5.1.4 Basic Communication Processor Architecture
5.2 Extension for DAB and DVB System
5.3 Extension for 802.11b Direct Sequence Spread Spectrum System
5.4 Fixed-Point System Simulation
5.4.1 802.11a OFDM Fixed-Point Simulation
5.4.2 802.11b DSSS/PBCC Fixed-Point Simulation
5.5 Proposed Scalable Communication Processor
6 Conclusion

[1] LAN/MAN standards Committe of the IEEE Computer Society, “Supplement to IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks -specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the
5GHz Band,” 1999.
[2] Simon R. Saunders, Antennas and Propagation for Wireless Communication Systems, First edition, 1999.
[3] Naftali Chayat, “Criteria for Comparison of 5GHz High Speed PHY Proposals,” doc: IEEE P802.11-97/96r2, 1997.
[4] LAN/MAN standards Committe of the IEEE Computer Society, “Supplement to IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks -specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-speed Physical Layer Ex-tension in the 2.4GHz Band,” 1999.
[5] Daniel Landström, Sarah Kate Wilson, Jan-Jaap van de Beek, PerÖdling, and Per Ola Börjesson, “Symbol time offset estimation in coherent OFDM systems,” IEEE International Conference on Communications, vol. 1, 1999.
[6] George L. Turin, “Introduction to Spread-Spectrum Antimultipath Techniques and Their Application to Urban Digital Radio,” in Proceedings of the IEEE, 1980, vol. 68, pp. 328—353.
[7] Alan V. Oppenheim and Ronald W. Schafer with John R. Buck, Discrete-Time Signal Processing.
[8] European Broadcasting Union, “ETSI 300 401 V1.3.3 European Standard — Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers,” 2001.
[9] European Broadcasting Union, “ETSI 300 744 V1.4.1 European Standard — Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television,” 2001.
[10] Yuan-Hao Huang, Design and implementation of a Communication digital signal processor for OFDM-based software radio, Ph.D. thesis, Dept. of Electrical Engineering, National Tiwan University, 2001.
[11] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread Spectrum Communications, 1995.
[12] L. Hanzo, W. Webb, and T. Keller, Single- and Multi-carrier Quadrature Amplitude Modulation, 2000.
[13] Intersil Corporation, “HFA3861: Data Sheet,” .
[14] Heinlich Meyr, “Why we need all these MIPS in future wireless communication systems - and how to design algorithms and architecture for these systems,” IEEE Workshop on Signal Processing Systems, 2001.
[15] Juha Heiskala and John Terry, OFDM Wireless LANs: A Theoretical and Practical Guide, First edition, 2002.
[16] Richard van Nee and Ramjee Prasad, OFDM for Wireless Multimedia Communications, First edition, 2000.
[17] Jan-Jaap van de Beek, Magnus Sandell, and Per Ola Börjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Transaction on Signal Processing, vol. 45, no. 7, pp. 1800—1805, 1997.
[18] Baoguo Yang, K. B. Letaief, Roger S. Cheng, and Zhigang Cao, “Windowed DFT Based Pilot-Symbol-Aided Channel Estimation for OFDM Systems in Multipath Fading Channels,” IEEE 51st Vehicular Technology Conference Proceedings, vol. 2, pp. 1480—1484, 2000.
[19] Michele Morelli and Umberto Mengali, “A Comparison of Pilot-Aided Channel Estimation Methods for OFDM Systems,” IEEE Transaction on Signal Processing, vol. 49, no. 12, pp. 3065—3073, 2001.
[20] Arto Palin and Jukka Rinne, “Enhanced symbol synchronization method for OFDM system in SFN channels,” Global Telecommunications Conference, vol. 5, 1998.
[21] Baoguo Yang, Khaled Ben Letaief, Roger S. Cheng, and Zhigang Cao, “Timing Recovery for OFDM Transmission,” IEEE Journal on Selected Area in Communications, vol. 18, 2000.
[22] Shu-Mei Lee, “Design and implementation of CCK8 modulation baseband processor for high speed wireless lan,” M.S. thesis, Dept. of Electrical Engi-neering, National Tiwan University, 2000.
[23] Riaz ESMAILZADEH and Masao NAKAGAWA, “Pre-RAKE Diversity
Combination for Direct Sequence Spread Spectrum Mobile Communications Systems,” in IEICE Transactions on Communications, 1993, number 8, pp. 1008—1015.
[24] Edward A. Lee and David G. Messerschmitt, Digital Communication.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張道義,中央健康保險局與診所醫師「合約法律關係」的探討,法學叢刊,第四十卷第一期,2001年1月。
2. 郭明政,法律在社會福利制度中之角色與任務,社區發展季刊,第六十七期,1994年9月。
3. 郭明政,法律在社會福利制度中之角色與任務,社區發展季刊,第六十七期,1994年9月。
4. 郭明政,法律在社會福利制度中之角色與任務,社區發展季刊,第六十七期,1994年9月。
5. 郝鳳鳴,全民健康保險法之修法方向─中法健康保險法比較研究,法律評論,第六十卷第十一、十二期合刊,1994年12月。
6. 郝鳳鳴,全民健康保險法之修法方向─中法健康保險法比較研究,法律評論,第六十卷第十一、十二期合刊,1994年12月。
7. 郝鳳鳴,全民健康保險法之修法方向─中法健康保險法比較研究,法律評論,第六十卷第十一、十二期合刊,1994年12月。
8. 周志宏,社會權─總論與教育權,月旦法學雜誌 第四十八期,1999年5月。
9. 周志宏,社會權─總論與教育權,月旦法學雜誌 第四十八期,1999年5月。
10. 周志宏,社會權─總論與教育權,月旦法學雜誌 第四十八期,1999年5月。
11. 張道義,中央健康保險局與診所醫師「合約法律關係」的探討,法學叢刊,第四十卷第一期,2001年1月。
12. 張道義,中央健康保險局與診所醫師「合約法律關係」的探討,法學叢刊,第四十卷第一期,2001年1月。
13. 陳聽安,健康保險之國際比較,保險專刊第三十九輯,1995年3月。
14. 陳聽安,健康保險之國際比較,保險專刊第三十九輯,1995年3月。
15. 陳聽安,健康保險之國際比較,保險專刊第三十九輯,1995年3月。
 
系統版面圖檔 系統版面圖檔