(3.237.97.64) 您好!臺灣時間:2021/03/09 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林志南
研究生(外文):Chih-Nan Lin
論文名稱:光纖光柵中模態耦合之模擬
論文名稱(外文):Simulation on Mode Coupling in Fiber Gratings
指導教授:江衍偉江衍偉引用關係
指導教授(外文):Yean-Woei Kiang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:70
中文關鍵詞:模態模態耦合理論短週期光柵長週期光柵參數快速變化的長週期光柵混合短週期與長週期之光柵
外文關鍵詞:Fiber modeCoupled-mode theoryshort-period gratingslong-period gratingsLong-period gratings with fast-varying parametersMixed short- and long-period fiber gratings
相關次數:
  • 被引用被引用:4
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
本論文使用數值方法分析光波模態在各種光纖光柵中的耦合現象。理論分析係基於模態耦合理論,吾人採矩陣法以解決多模態耦合之問題,這包括: 均勻短週期光柵、均勻長週期光柵、非均勻且參數快速變化的長週期光柵。利用串接矩陣的方法能有效計算非均勻光柵的特性。藉特殊設計的數值法則,吾人亦探討一混合短週期與長週期之光柵的耦合理論,此種結構能藉調整長週期光柵折射指數之變化量以控制不同波長的光波反射量。易言之,此種混合光柵能調變Bragg 波長與其他波長間的光波反射量。吾人亦對模態耦合的物理意義加以解釋。
Abstract
Mode coupling in various optical fiber gratings is numerically investigated in this thesis. The analysis is based on the coupled-mode theory. For easy programming, we use the matrix method to solve the problems of multimode couplings in uniform short- period gratings, uniform long-period gratings, and nonuniform long-period gratings with fast-varying parameters. The cascade of matrices can be utilized to calculate the characteristics of nonuniform gratings. In this thesis, we also investigate the problem of the mixed short- and long-period grating by using a specially designed numerical algorithm. It is found that the reflectivity at different wavelengths can be controlled by adjusting the index change in the core region of the long-period grating. In other words, we can directly modulate the reflectivity between the Bragg wavelength and some other wavelengths. The physical meaning of this kind of mode coupling is also explained.
Contents
Chapter 1 Introduction-------------------------------1
Chapter 2 Theoretical formulations-------------------4
2.1 Fiber modes------------------------------------4
2.2 Coupled-mode theory----------------------------9
2.2.1 Uniform short-period gratings---------------14
2.2.2 Uniform long-period gratings----------------17
2.2.3 Long-period gratings with fast-varying parameters
--------------------------------------------------19
2.2.4 Mixed short- and long-period fiber gratings-20
Chapter 3 Numerical algorithms----------------------25
3.1 Uniform short-period gratings-----------------25
3.2 Uniform long-period gratings------------------30
3.3 Long-period gratings with fast-varying parameters
--------------------------------------------------33
3.4 Mixed short- and long-period fiber gratings---36
Chapter 4 Numerical results-------------------------41
4.1 Fiber modes-----------------------------------41
4.2 Short-period fiber gratings-------------------43
4.3 Long-period fiber gratings--------------------44
4.3 Mixed short- and long-period fiber gratings---46
Chapter 5 Conclusions-------------------------------61
Appendix--------------------------------------------64
References------------------------------------------69
References
[1] T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters, ” J. Opt. Soc. Amer. A, vol 14, pp. 1760-1773, Aug. 1997.
[2] A. M. vegsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-Period fiber Gratings as band-Rejection Filters,” J. Lightwave Technol., vol. 14, pp. 58-65, 1996.
[3] T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol., vol. 15, pp. 1277-1294, 1997.
[4] W. F. Liu, I. M. Liu, L. W. Chung, D. W. Huang, and C. C. Yang, “Acoustic-induced switching of the reflection wavelength in a fiber Bragg grating,” Opt. Lett., vol. 25. pp. 1319-1321, Sep. 2000.
[5] H. Ke, J. Peng, and C. Fan, “Design of Long-Period Fiber Gratings With Fast-Verying Parameters,” IEEE J. Quantum Electron., vol. 13, pp. 1194-1196, Nov. 2001.
[6] G. W. Chern and L. A. Wang, “Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings,” J. Opt. Soc. Am. A, vol. 16, pp. 2675-2689, November 1999.
[7] E. Snitzer, “Cylindrical dielectric waveguides modes,” J. Opt. Soc. Amer., vol. 51, pp. 491-498, May 1961.
[8] S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron., vol. QE-10, pp. 879-887, Dec. 1974.
[9] S. Kawakami and S. Nishida, “Perturbation theory of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron., vol. QE-11, pp. 130-138, April 1975.
[10] A. Safaai-Jazi and G. L. Yip, “Classification of Hybrid modes in cylindrical dielectric optical waveguides,” Radio Sci., vol. 12, pp. 603-609, July-Aug. 1977.
[11] D. Marcuse, Theory of Dielectric Optical Waveguides, Academic, Boston, Mass., 1991.
[12] S. Radic, N. George, and G. P. Agrawal, “Analysis of Nonuniform Nonlinear distributed Feedback Structures: Generalized Transfer Matrix Method,” IEEE J. Quantum Electron., vol. 31, pp. 1326-1336, July 1995.
[13] M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback alab waveguides via a fundamental matrix approach,” Appl.Opt., vol. 26, pp. 296-313, 1996.
[14] H. J. Patrick, A. D. kersey and F. Bucholtz, “Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction,” J. Lightwave Technol., vol. 16, pp. 1606-1612, Sep. 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔