(54.236.58.220) 您好!臺灣時間:2021/02/28 08:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王俊惟
研究生(外文):Chun-Wei Wang
論文名稱:在週期頻率誤差及同調情況下利用信號週期恆定特性之強健式波束成型技術
論文名稱(外文):Robust Beamforming Using Signal Cyclostationary Under Cycle Frequency Error and Coherent Situation
指導教授:李枝宏李枝宏引用關係
指導教授(外文):Jou-Hong Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:146
中文關鍵詞:盲目波束成形技術
外文關鍵詞:Blind Beamforming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
波束成形技術在於設計一個空間濾波器,有效的將干擾信號消除,並保留所想要信號。無論是在雷達、聲納及麥克風陣列都有廣泛的應用,近年來也有不少是將波束成形技術應用在行動通訊上。而一般傳統波束成形器,在存在同調信號的環境下,會產生所謂信號消除現象。因此在本文中,我們提出一個配合傳統空間平均法、TAM及微分限制結構,去建構出一個更具容忍度的強健式波束成形技術。
近年來,利用信號週期恆定性應用於盲目的波束成形技術有許多的討論,其中以Gardner等人,所提出的SCORE演算法為代表。而存在多重路徑時環境時,會使得一般SCORE演算法,也會造成信號消除現象,而進一步產生ISI。在本文中,會使用Backward PHASE-SCORE演算法,配合SS-PHAM的前置處理以改善此現象。我們也將進一步探討因為Doppler效應或者其它因素,而造成週期頻率產生誤差。在本文中我們會觀察此現象,並提出一個強健式的方法,來解決這個問題。
最後,討論同時存在週期頻率誤差及多重路徑的情況下。基於Backward PHASE-SCORE演算法,首先使用SS-PHAM的前置處理去破壞信號彼此同調關係,接下來進一步套用之前所使用的強健式方法,以達到在週期頻率誤差及多重路徑的環境下之強健式盲目波束成形技術。

Adaptive beamforming technique is used to design a spatial filter, which suppressed the signal of non-interest and background noise, and receives the signal of interest. In the thesis, when coherent source is presented, we proposed a method of SS+TAM+Der scheme to solve the coherent situation.
In recent years, the family of Self COherent REstoral(SCORE) algorithm proposed by Gardner has been shown be blindly extract cyclostationary signals. However, the algorithm fails in the multipath fading. Therefore, we developed an algorithm to extract signals by using the backward technique. Go ahead, we to observe a phenomenon when the cycle frequency is error and presented a robust method for adaptive beamforming.
Final, we also developed a robust method under random cycle frequency error and coherent situation.

第一章 緒論 ____________________________________________1
第二章 天線陣列信號處理之數學基礎及基本概念_________ 6
2.1 天線陣列之基本架構 …………………………………….. 6
2.2 相關矩陣的特徵結構 …………………………………….. 9
2.3 可適性波束成形技術 …………………………………….. 12
2.4 廣義旁瓣消除器 ………………………………………….. 14
2.5 微分限制之概念 ………………………………………….. 19
2.6 極小--極大準則 …………………………………………… 20
第三章 使用廣義旁瓣消除器解決同調問題 ______________ 25
3.1 信號抵消現象 …………………………………………….. 25
3.2 空間平均法 ……………………………………………….. 27
3.3 改良式空間平均法 ……………………………………….. 32
3.4 空間平均法配合TAM及微分限制 ………………………… 37
3.5 模擬分析與討論 ………………………………………….. 39
第四章 週期恆定信號之波束成型器_____________________ 49
4.1 週期恆定特性之基本觀念 ………………………………... 49
4.2 SCORE演算法………………………………………………… 51
4.2.1 LS-SCORE演算法………………………………………… 52
4.2.2 CROSS-SCORE演算法 ……………………………………… 54
4.2.3 PHASE-SCORE演算法 ……………………………………… 55
4.2.4 Backward PHASE-SCORE演算法…………………………… 56
4.3 盲目廣義旁瓣消除器………………………………………… 59
4.3.1 阻隔矩陣的構成 ………………………………………… 59
4.3.2 靜態權重向量 …………………………………………… 63
4.4 在多重路徑環境下,強健式SCORE演算法………………… 65
4.5 模擬分析與討論…………………………………………… 69
第五章 在週期頻率誤差下SCORE演算法修正 _______________ 82
5.1 週期頻率偏差對SCORE演算法的影響 …………………… 82
5.2 解決週期頻率誤差之強健式波束成型技術 ……………… 86
5.2.1 基於LS-SCORE之方法 …………………………………… 87
5.2.2 基於CROSS-SCORE之方法 ……………………………… 90
5.2.3 基於PHASE-SCORE之方法……………………………….. 92
5.2.4 基於Backward PHASE-SCORE之方法 ………………………94
5.3 SCORE演算法使用線上作法之運算複雜度 ……………… 97
5.3.1 CROSS-SCORE ……………………………………………… 97
5.3.2 PHASE-SCORE ……………………………………………….98
5.3.3 Backward PHASE-SCORE ………………………………….99
5.4 模擬分析與討論 ………………………………………… 100
第六章 存在隨機週期頻率誤差下的強健式可適性波束成型器 113
6.1隨機週期頻率誤差的數學統計模式 ………………………… 113
6.2基於SCORE演算法的強健式波束成型器 ………………………118
6.2.1基於LS-SCORE之方法…………………………………………118
6.2.2基於CROSS-SCORE之方法 ……………………………………119
6.2.3基於PHASE-SCORE之方法 ……………………………………121
6.2.4基於Backward PHASE-SCORE之…………………………..…122
6.3在多重路徑與隨機週期頻率誤差之強健式波束成型 …..……123
6.4 模擬分析與討論 ……………………………………………… .123
第七章 結論及未來研究方向 ______________________________ 139
參考文獻 ________________________________________________142

[1] P.W. Howells, “Exploration in fixed and adaptive resolution at GE and SURC,” IEEE Trans. on Antennas and Propagat., Vol. AP-24, pp. 575-584, Sept. 1976
[2] S.P Applebaum, “Adaptive arrays,” IEEE Trans. on Antennas and Propagat., Vol.
AP-24, pp. 585-598, Sept. 1976
[3] B. Widrow and S.D. Stearns, ADAPTIVE SIGNAL PROCESSING, Prentice-Hall, Englewood Cliffs, N.J. 1985
[4] Tie-Jun Shan, Thomas Kailath, “Adaptive Beamforming for Coherent Signal and Interference,” IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-38, NO. 3, pp. 527-536, JUNE 1985
[5] K.M. Duvall, “Signal Cancellation Phenomena in Adaptive Antenna: Causes and Cures,” IEEE Trans. on Antennas and Propagat., Vol. AP-30, NO. 3, pp.469-478
, MAY 1982
[6] B.G. Agee, S.V. Schell and W.A. Gardner, “Spectral self coherence restoral: A new approach to blind adaptive signal extraction using antenna arrays.” Proc. IEEE, Vol. 78, pp. 753-767, Apr. 1990
[7] W.A. Gardner, “Exploitation of Spectral redundancy in cyclostationary signal,” IEEE SP MAGAZINE, pp. 14-36, Apr. 1991
[8] Shiann-Jeng Yu, Fang-Biau Ueng “Blind Adaptive Beamforming Based on Generalized Sidelobe Canceller,” ELSEVIER Signal Processing 80, pp. 2497-2506, MAY 2000
[9] 李永定, “Adaptive Array Signal Processing Using Signal Cyclostationarity,” 台大電機工程研究所博士論文, 2000
[10] C.-C. Lee and J.-H. Lee, “Robust adaptive array beamforming under steering vector errors,” IEEE Trans. Antennas and Propagat., Vol. 45, pp. 168-175, Jan. 1997
[11] D.D. Feldman and L.J. Griffiths, “A projection approach for robust adaptive beamforming,” IEEE Trans. Signal Processing, Vol. 42, pp. 867-876, Apr 1994
[12] L.J. Griffiths and C.W. Jim, “An alternative approach to linearly constrained adaptive beamforming,” IEEE Trans. Antennas Propagat., Vol. AP-30, pp. 27-34, Jan. 1982
[13] J.W. Kim and C.K. Un, “A robust adaptive array based on signal subspace approach,” IEEE Trans. Signal Processing, Vol. 41, No. 11, pp. 3166-3171, Nov. 1993
[14] B.D. Van Veen and K.M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP MAGAZINE, pp. 4-24, Apr. 1988
[15] Frost III, O.L, “An algorithm for linearly constrained adaptive processing,” Proc. IEEE, Vol. 60, pp. 926-935, Aug. 1972
[16] N.K. Jablon, “Adaptive Beamforming with the Generalize Sidelobe Canceller in the Presence of Array Imperfections,” IEEE Antenna and Propagat., Vol. AP-34, pp. 996-1012, Aug. 1986
[17] K.M Buckley and L.J. Griffiths, “An adaptive Generalized Sidelobe Canceller with derivative constraints,” IEEE Trans. Antennas and Propagation., Vol. AP-34, No. 3, pp. 311-319, March 1986
[18] S.C. Pei, C.C. Yen, and S.C. Chiu, “Modified spatial smoothing for coherent jammer suppression without signal cancellation,” IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. 36, No. 3, pp. 412-414, MARCH 1988
[19] 邱順建, “Analysis and Modification of Spatial Smoothing Technique for Coherent Jammer Suppression,” 台大電機工程學研究所碩士論文, 1988
[20] S.Y. Kung, C.K. Lo, and R. Foka, “A Toeplitz approximation approach to coherent source direction finding,” Proc. ICASSAP, Tokoyo, Japan, pp. 193-196, Apr. 1986
[21] 李永定, “Robust Beamforming Under Nonideal Conditions,”台大電機工程學研究所碩士論文, 1995
[22] S.-J. Yu and J.-H. Lee, “Adaptive array beamforming for cyclostationary signals,” IEEE Trans. Antennas and Propagation, Vol. 44, pp. 943-953, July. 1996
[23] Q. Wu and K.M Wong, “Blind adaptive beamforming for cyclostationary signals.” IEEE Trans. Signal Processing, Vol. 44, pp. 2757-2767, Nov. 1996
[24] J.-H. Lee and Y.-T. Lee, “Robust adaptive array beamforming for cyclostationary signals under cycle frequency error,” IEEE Trans. Antennas and Propagation, Vol. 47, pp. 233-241, Feb. 1999
[25] 黃乾書, “Robust Array Beamforming for Coherent Cyclostationary Signals,” 台大電信工程學研究所碩士論文, 2000
[26] MENG HWA ER, ATN. CANTONI, “Derivate Constraints for Broad-Band Element Space Antenna Array Processors,” IEEE Trans. Vol. ASSP-31, No. 6 DEC. 1983
[27] Alex.B Gershman and Victor T. Ermolaev, “Optimal Subarray Size for Spatial Smoothing,” IEEE Signal Processing Letters. Vol. 2, No. 2, February. 1995
[28] Ju-Hong Lee, Yung-Ting Lee, and Wen-Hao Shin, “Efficient Robust Adaptive
Beamforming for Cyclostationary Signal,” IEEE Trans. Signal Processing, Vol.
48, No. 7, July. 2000
[29] 卓經綸, “Robust Adaptive Array Beamforming Using Generalized Sidelobe Canceller,” 台大電信工程學研究所碩士論文, 2001
[30] Paul D. Anderson, Mary Ann Ingram, “The Performance of the Least Mean Squares Algorithm Combined with Spatial Smoothing,” IEEE Trans. Signal Processing, Vol. 45, No. 4 APRIL. 1997
[31] W.A. Gardner, Cyclostationarity in Communication Signal Processing, New York:IEEE Press, 1994

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔