(54.236.62.49) 您好!臺灣時間:2021/03/08 02:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳山宗
研究生(外文):Shan-Tsung Wu
論文名稱:可程式的正交分頻多工-分碼存取之多用戶通訊
論文名稱(外文):Programmable OFDM-CDMA multiuser communications
指導教授:陳光禎陳光禎引用關係
指導教授(外文):Kwang-Cheng Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:138
中文關鍵詞:多載波分碼存取正交分頻多工多用戶偵測多用戶同步軟體無線電天線陣列可程式
外文關鍵詞:multicarriercdmaofdmmultiuser detectionmultiuser synchronizationsoftware radioantenna arrayprogrammable
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
我們首先提出了一種叫做OFCDMA (orthogonal frequency CDMA) 的廣義架構來描述用多載波傳輸之CDMA (code division multiple access 分碼存取) 通訊系統,並分析與比較此廣義架構之一些特殊架構在多重路徑的通道 (multipath fading channel) 下各種型態的干擾 (interference) 與傳輸錯誤率受頻率飄移 (frequency offset) 的影響,以提供更多的資訊來設計更好的接收器。基於OFCDMA之類比架構我們發展出一個可程式的(programmable) OFDM-CDMA (正交分頻多工-分碼存取) 數位接收發射器之硬體架構。而只要具備此一硬體架構,靠著軟體的程式就可達成多系統的通訊目標。接下來我們基於此可程式的OFDM-CDMA 數位接收發射器發繼而發展出線性的可程式的OFDM-CDMA多用戶偵測器 (multiuser detector) 與同步器 (multiuser synchronizer) ,設計當中我們同使考慮了時域 (time domain),頻域 (frequency domain),空間域 (space domain),碼域 (code domain) 這些方面的最佳化問題。而關於多用戶同步器的發展我們更提出一套設計訓練數列 (training sequence) 演算法做到只以線性的複雜度達成最佳化的時機偵測(optimum timing estimation)。

A general scheme called orthogonal frequency CDMA (OFCDMA) to describe a CDMA system with orthogonal carrier transmission is first proposed. Three well known multicarrier CDMA schemes, including multicarrier CDMA, multicarrier direct sequence CDMA, and multitone CDMA, can be derived as special cases of the proposed OFCDMA if system parameters are appropriately defined. We proceed a unified analysis of the OFCDMA to systematically study the performance of those three multicarrier CDMA schemes. Multiray multipath fading is assumed in each subchannel and the maximum ratio combing approach is used for detection. Five types of interference occur under this situation. We analyze and compare among the three schemes for each type of interference and discuss their pros and cons. Both qualitative and quantitative results can help design effective OFCDMA receivers in the interference-limited environments.
Combining OFDM and CDMA technologies is attractive for future wireless
broadband communications while software radio realization is a inevitable trend because of its flexibility to diverse multi-system or multi-standard communication environments. Based on the proposed unified framework OFCDMA, we develop a programmable structure for OFDM-CDMA transceivers in spite of three different scenarios to combine OFDM and CDMA. By adjusting system parameters, various system scenarios can be implemented without changing the fundamental hardware and software architecture, which might serve as the foundation for designing software radio.
Next, we develop a programmable OFDM-CDMA multiuser detection structure based on the programmable OFDM-CDMA transceivers architecture. Various system scenarios, such as MC-CDMA, MC-DS-CDMA, and MT-CDMA can be realized by adjusting system parameters in the programmable multiuser detection structure. A unified approach jointly considering multiaccess interference and other interferences in time, space, and frequency domains is used in developing the programmable detection structure. The unified approach not only facilitates designing programmable OFDM-CDMA detection structures but also provides systematic design rules for reduced complexity multiuser detectors. Therefore, we further propose a joint detection strategy to reduce the complexity. It is shown that the proposed programmable detectors based on LMMSE and BLUE are robust against near-far environments due to channel fading effects. The proposed reduced complexity detectors are also shown to be effective in a frequency selective environment. A more effective synchronization is desired for a multiuser detector, which is highly sensitive to estimation errors of timings, carrier phases and amplitudes. Therefore, we develop a programmable multiuser synchronization structure for general
OFDM-CDMA systems. Different synchronization scenarios for various combinations of OFDM and CDMA can be implemented by controlling system parameters. A unified approach jointly considering multiaccess interference and other interferences
in time, space, and frequency domains is used in developing the programmable synchronization structure. We show that for both BLUE and LMMSE estimators, the mean square error of users’ amplitudes and timings approaches zero as noise tends to zero. Simulation results show that BLUE and LMMSE estimators are robust against near-far problems due to channel fading effects.
Following the work in programmable multiuser synchronization, we further consider training sequence design to improve performance. The optimum multiuser
timing estimation based on the maximum a posteiori rule (MAP) has an NP-hard nature. However, by making the submatrices of the effective correlation matrix diagonal with special training sequences, user's signals equivalently become orthogonal.
As a result, the complexity of the optimum solution is reduced to be linear. In this letter, we present a systematical approach to achieve the optimum solution with linear complexity using special training sequences. The existence of those sequences is proved, and algorithms for finding them are proposed for AWGN channels as well as multiray fading channels. Performance analysis shows that our approach further makes a multiuser environment become a single-user one so the performance characteristic is the same as that in a single-user environment. Simulation results show that our approach significantly outperforms the approach with all-1 training sequences.

封面
Abstract
Contents
List of Tables
List of Figures
1 Introduction
1.1 Direct Sequence CDMA Communications
1.2 Multiuser Detections and Synchronizations

[1] M. Moeneclaey H. Sari, F. Vanhaverbeke, “Overview of multicarrier CDMA,”
IEEE Commun. Mag., pp. 74—82, Jan. 2000.
[2] N. Jayant, “High quality networking of audio-visual information,” IEEE Commun.
Mag., pp. 84—95, Sept. 1993.
[3] T. N. Saadawi I. W. Habib, “Multimedia tra±c characteristics in broadband
networks,” IEEE Commun. Mag., pp. 48—54, July 1992.
[4] G. Caire et al., “Wide-band CDMA for the
UMTS/IMT-2000 satellite component,” IEEE Trans. Veh. Technol., pp. 306—
331, Mar. 2002.
[5] “Special issue IMT-2000: Standards eRorts of the ITU,” IEEE Personal Commun.,
Aug. 1997.
[6] “Special issue wideband CDMA,” IEEE Commun. Mag., Sept. 1998.
[7] D. L. Schilling et al., “Broadband CDMA overlay,” Int. J. Wireless Inform.
Networks, pp. 197—221, Oct. 1995.
[8] M. Sawahashi F. Adachi and H. Suda, “Wideband DS-CDMA for next generation
mobile communications systems,” IEEE Commun. Mag., pp. 56—69, Sept.
1998.
[9] A. J. Viterbi, CDMAXPrinciples of Spread Spectrum Communication, Addison-
Wesley, 1998.
[10] J. I. Jung, “Quality of service in telecommunications. i. proposition of a qos
framework and its application to b-isdn,” IEEE Commun. Mag., pp. 108—111,
Aug. 1996.
[11] J. I. Jung, “Quality of service in telecommunications .ii. translation of qos
parameters into atm performance parameters in b-isdn,” IEEE Commun. Mag.,
pp. 112—117, Aug. 1996.
[12] L. B. Milstein, “Wideband code division multiple access,” IEEE JSAC, pp.
1344—1354, Aug. 2000.
[13] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division
multiplexing using the discrete Fourier transform,” IEEE Trans. Commun.,
pp. 628—634, Oct. 1971.
[14] G. Fettweis T. Hentschel, M. Henker, “The digital front-end of software radio
terminals,” IEEE Personal Communications, pp. 40—46, Aug. 1999.
[15] E. Buracchini, “The software radio concept,” IEEE Commun. Mag., pp. 138—
143, Sept. 2000.
[16] C. S. Chang K. C. Chen and R. Prasad, Guaranteed QoS Wireless Access to
Broadband Networks, Kluwer, 1999.
[17] S. T. Wu K. C. Chen, “A programmable architecture for OFDM-CDMA,”
IEEE Commun. Mag., pp. 76—82, Nov. 1999.
[18] S. Verdu, Multiuser Detection, Cambridge, U.K.: Cambridge Univ. Press, 1998.
[19] R. Lupas and S. Verdu, “Linear multiuser detectors for synchronous codedivision
multiple-access channels,” IEEE Trans. Inform. Theory, pp. 123—136,
Jan. 1989.
[20] S. Verdu, “Optimum multiuser asymptotic e±ciency,” IEEE Trans. Commun.,
pp. 890—897, Sept. 1986.
[21] R. Lupas and S. Verdu, “Linear multiuser detectors for synchronous codedivision
multiple-access channels,” IEEE Trans. Inform. Theory, pp. 123—136,
Jan. 1989.
[22] O. L. Frost, “An algorithm for linearly constrained adaptive array processing,”
Proc. IEEE, pp. 926—935, Aug. 1972.
[23] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-antenna
communication link in rayleigh flat fading,” IEEE Trans. Inform. Theory, pp.
139—157, Jan. 1999.
[24] j. Salz J. H. Winters and R. D. Gitlin, “The impact of antenna diversity on
the capacity of wireless communication systems,” IEEE Trans. Commun, pp.
1740—1751, Feb. 1994.
[25] A. Paulraj A. Paulraj and T. Kailath, “Space-time processing for wireless
communications,” IEEE Signal Processing Mag., pp. 49—83, Nov. 1997.
[26] J. C. Tu P. S. Chow and J. M. Cio±, “Performance evaluation of a multichannel
transceiver system for ADSL and VHDSL services,” IEEE JSAC, pp. 909—919,
Aug. 1991.
[27] R. T. Short Z. Xie and C. K. Rushforth, “A family of suboptimum detectors
for coherent multiuser communications,” IEEE JSAC, pp. 683—690, May 1990.
[28] M. B. Pursley, “Performance evaluation for phase-coded spread-spectrum
multiple-access communicationxpart I: System analysis,” IEEE Trans. Commun.,
pp. 795—799, Aug. 1977.
[29] D. R. Anderson and P. A. Wintz, “Analysis of a spread-spectrum multipleaccess
system with a hard limiter,” IEEE Trans. Commun. Technol., pp. 285—
290, Apr. 1969.
[30] J. M. Aein, “Multiple access to a hard-limiting communication-satellite repeater,”
IEEE Trans. Space Electron. Telemetry, pp. 159—167, Dec. 1964.
[31] G. L. Turin, “The eRects of multipath and fading on the performance of directsequence
CDMA systems,” IEEE JSAC, pp. 597—603, July 1984.
[32] R. Eschenbach, “Applications of spread-spectrum radio to indoor data communications,”
in Proc. IEEE Military Commun. Conf., 1982, pp. 34.5—1—34.5—3.
[33] D. E. Borth and M. B. Pursley, “Analysis of direct-sequence spread spectrum
multiple-access communications over rician fading channels,” IEEE Trans.
Commun., pp. 1566—1577, Oct. 1979.
[34] D. L. Noneaker and M. B. Pursley, “Selection of spreading sequences for directsequence
spread-spectrum communications over a doubly selective fading channel,”
IEEE Trans. Commun., pp. 3171—3177, Dec. 1994.
[35] D. L. Noneaker and M. B. Pursley, “The eRects of sequence selection on ds
spread spectrum with selective fading and rake reception,” IEEE Trans. Commun.,
pp. 229—237, Feb. 1996.
[36] J. M. Holtzman and L. M. A. Jalloul, “Rayleigh fading eRect reduction with
wideband DS/CDMA signals,” IEEE Trans. Commun., pp. 1012—1016, Apr.
1994.
[37] L. M. A. Jalloul and J. M. Holtzman, “Multipath fading eRects on wide-band
DS/CDMA signals: Analysis, simulation, and measurements,” IEEE Trans.
Veh. Technol., pp. 801—807, Aug. 1994.
[38] A. Jalali and P. Mermelstein, “ERect of diversity, power control, and bandwidth
on the capacity of microcellular CDMA systems,” IEEE JSAC, pp. 952—961,
June 1994.
[39] R. Skaug and J. L. Robinson, “Operation of portable hf CDMA networks with
controlled transmitter powers,” in IEE Proc., Dec. 1982, pp. 467—474.
[40] U. Madhow M. Honig and S. Verdu, “Blind adaptive multiuser detection,”
IEEE Trans. Inform. Theory, pp. 944—960, July 1995.
[41] N. S. Correal R. M. Buehrer and B. D. Woerner, “A comparison of multiuser
receivers for cellular CDMA,” in Proc. IEEE GLOBECOM, 1996, pp. 1571—
1577.
[42] S. E. Bensley and B. Aazhang, “Subspace-based channel estimation for code
division multiple access communication system,” IEEE Trans. Commun., pp.
1009—1020, Aug. 1996.
[43] A. Duel-Hallen, “Decorrelating decision-feedback multiuser detector for synchronous
code-division multiple access channel,” IEEE Trans. Commun., pp.
285—290, Feb. 1993.
[44] C. M. Chang and K. C. Chen, “Multiuser synchronization,” in Proc. IEEE
PIMRC, 2000, pp. 1090 —1095.
[45] J.A.C. Bingham, “Multicarrier modulation for data transmission: an idea
whose time has come,” IEEE Commun. Mag., pp. 5—14, May 1990.
[46] J. G. Proakis, Digital Communication, McGraw-Hill, New York, 3rd edition,
1995.
[47] H. Cheon and D. Hong, “ERect of channel estimation error in OFDM-based
WLAN,” IEEE Communications Letters, pp. 190—192, May 2002.
[48] B. Chen, “Maximum likelihood estimation of OFDM carrier frequency oRset,”
IEEE Signal Processing Letters, pp. 123—126, Apr. 2002.
[49] S. Xuemin C. Jun, J. W. Mark, “Fast fading channel estimation in multicarrier-
CDMA systems,” Proc. IEEE GLOBECOM, pp. 3135—3139, 2001.
[50] H. Chen and G. J. Pottie, “An orthogonal projection-based approach for PAR
reduction in OFDM,” IEEE Communications Letters, pp. 169—171, May 2002.
[51] D. Gesbert H. Bolckei and A. J. Paulraj, “On the capacity of OFDM-based
spatial multiplexing systems,” IEEE Trans. Commun., pp. 225—234, Feb. 2002.
[52] N. Dinur and D. Wulich, “Peak-to-average power ratio in high-order OFDM,”
IEEE Trans. Commun., pp. 1063 — 1072, June 2001.
[53] H. Ochiai and H. Imai, “On the distribution of the peak-to-average power ratio
in OFDM signals,” IEEE Trans. Commun., pp. 282 — 289, Feb. 2001.
[54] J. Mitola III, “Technical challenges in the globalization of software radio,”
IEEE Commun. Mag., pp. 84—89, Feb. 1999.
[55] R. D. Koilpillai K. C. Zangi, “Software radio issues in cellular base stations,”
IEEE JSAC, pp. 561—573, Apr. 1999.
[56] A. J. Paulraj and C. B. Papadias, “Space-time processing for wireless communications,”
IEEE Signal Processing Mag., pp. 49—83, Nov. 1997.
[57] A. F. Molisch J. Fuhl and E. Bonek, “Unified channel model for mobile radio
systems with smart antennas,” in IEE Proc. Radar, Sonar and Navigation,
Feb. 1998, pp. 32—41.
[58] X. Bernstein and A. M. Haimovic, “Space-time processing for increased capacity
of wireless CDMA,” in Proc. ICC, 1996, pp. 597—601.
[59] D. Dahlhaus et al., “Joint demodulation in DS/CDMA system exploiting the
space and time diversity of the mobile radio channel,” in Proc. IEEE PIMRC,
1997, pp. 47—52.
[60] A. Paulraj A. F. Naguib and T. Kailath, “Capacity improvement with basestation
antenna arrays in cellular CDMA,” IEEE Trans. Veh. Technol., pp.
691—698, Aug. 1994.
[61] E. S. Sousa S. Kandala and S. Pasupathy, “Multi-user multi-sensor detectors
for CDMA networks,” IEEE Trans. Commun, pp. 946—957, Feb. 1995.
[62] M. Nagatsuka and R. Kohno, “A spatially and temporally optimal multiuser
receiver using an antenna array for DS/CDMA,” IEICE Trans. Commun., pp.
1489—1497, Nov. 1995.
[63] A. Elshamly S. M. Elnoubi, E. Sourour, “Performance of multicarrier CDMA
with DPSK modulation and diRerential detection in fading multipath channels,”
IEEE Trans. Veh. Technol., pp. 526—536, May 2002.
[64] A. El-Beheiry S. M. Elnoubi, “ERect of overlapping between successive carriers
of multicarrier CDMA on the performance in a multipath fading channel,”
IEEE Trans. Commun., pp. 769—773, May 2001.
[65] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Commun.
Mag., pp. 126—133, Dec. 1997.
[66] T. H. Lee S. Hara and R. Prasad, “BER comparison of DS-CDMA and MCCDMA
for frequency selective fading channels,” in Proc. 7th Tyrrhenian International
Workshop on Digital Communications, Viareggio,Italy, 1995, pp.
3—14.
[67] E. A. Sourour and M. Nakagawa, “Performance of orthogonal multicarrier
CDMA in a multipath fading channel,” IEEE Trans. Commun., pp. 356—367,
Mar. 1996.
[68] L. Vandendorpe, “Multitone spread spectrum multiple access communications
system in a multipath rician fading channel,” IEEE Trans. veh. Technol., pp.
327 —337, May 1995.
[69] S. Schwartz H. C. Huang and S. Verdu, “Combined multipath and spatial
resolution for multiuser detecion: Potentials and problems,” in Proc. IEEE
ISIT, 1995, p. 205.
[70] E. A. Al-Susa A. C. McCormick, “Multicarrier CDMA for future generation
mobile communication,” Electronics and Communication Engineering Journal,
pp. 52—60, Apr. 2002.
[71] G. Huang Y. Li, C. N. Georghiades, “Performance of downlink multicarrier
CDMA with space diversity,” Proc. IEEE GLOBECOM, pp. 887—889, 2000.
[72] B.J. Miller, S.L.; Rainbolt, “MMSE detection of multicarrier CDMA,” IEEE
JSAC, pp. 2356—2362, Nov. 2000.
[73] J. R. Fonollosa et al., “Blind multiuser detection with array observations,”
Wireless Personal Commun. Vol. 6, pp. 179—196, 1998.
[74] R. Kohno et al., “Combination of an adaptive array antenna and a canceller of
interference for direct-sequence spread-spectrum multipleaccess system,” IEEE
JSAC, pp. 641—649, May 1990.
[75] V. Ghazi-Moghadam and M. Kaveh, “CDMA interference cancelling? receiver
with an adaptive blind array,” in Proc. IEEE ICASSP, May 1997, pp. 4037—
4040.
[76] A. L. Swindlehurst Q. H. Spencer, “On the performance of multicarrier CDMA
using multiple transmitters,” in Proc. IEEE ICASSP, 2001, pp. 2397—2400.
[77] C. M. Chang and K. C. Chen, “Joint linear timing and carrier phase estimation
of DS-CDMA multiuser communications,” IEEE JSAC, pp. 87—98, Jan. 2001.
[78] S. Y. Miller and S. C. Schwartz, “Parameter estimation for asynchronous multiuser
communication,” in Proc. Conf. Inform. Sci. and Syst., 1998.
[79] C. K. Rushforth T. K. Moon, Z. Xie and R. T. Short, “Parameter estimation in
a multiuser communication system,” IEEE Trans. Commun., pp. 2553—2560,
Aug. 1994.
[80] R. T. Short P. Zhang and X. X. Chen, “Fast timing estimation for CDMA
waveforms in a near-far environment,” in Proc. IEEE GLOBECOM, Nov. 1996,
pp. 1799—1803.
[81] C. M. Chang and K. C. Chen, “A frequency domain approach to timing estimation
in multiuser communications,” in Proc. IEEE VTC, May 1998, pp.
328—332.
[82] C. M. Chang and K. C. Chen, “Pilot-signal aided multiuser timing estimation in
DS-CDMA communications,” in Proc. IEEE GLOBECOM, 1998, pp. 532—536.
[83] J-P. Linnartz N. Yee and G. Fettweis, “Multicarrier CDMA in indoor wireless
radio networks,” in Proc. IEEE PIMRC, Yokohama, Japan, Sept. 1993, pp.
109—113.
[84] K. Fazel and L. Papke, “On the performance of convolutionally-coded
CDMA/OFDM for mobile communication system,” in Proc. IEEE PIMRC,
Yokohama, Japan, Sept. 1993, pp. 468—472.
[85] V. M. DaSilva and E. S. Sousa, “Performance of orthogonal CDMA codes for
quasi-synchronous communication systems,” in Proc. IEEE ICUPC, Ottawa,
Canada, Oct. 1993, pp. 995—99.
[86] L. Vandendorpe, “Multitone direct sequence CDMA system in an indoor wireless
environment,” in Proc. IEEE First Symposium of Communications and
Vehicular Technology, Benelux, Delft, Netherlands, Oct. 1993, pp. 4.1—1 — 4.1.8.
[87] X. Lin A. N. Akansu, P. Duhamel and M. de Courville, “Orthogonal transmultiplexers
in communication: A review,” IEEE Trans. Signal Processing, pp.
979—995, Apr. 1998.
[88] X. Wang and H. V. Poor, “Space-time multiuser detection in multipath CDMA
channels,” IEEE Trans. Signal Processing, pp. 2356—2374, Sept. 1999.
[89] S. T. Wu and K. C. Chen, “Orthogonal frequency CDMA for broadband communications,”
in Proc. IEEE VTC Fall, Amsterdam, 1999, pp. 2890 —2894.
[90] T. K. Moon and W. C. Stirling, Mathematical methods and algorithms for
signal processing, Prentice Hall, New Jersey, 2000.
[91] H. V. Poor, An Introduction to Signal Detection and Estimation, Springer-
Verlag, 2nd edition, 1994.
[92] S. T. Wu and K. C. Chen, “Programmable multiuser detection for OFDMCDMA,”
in Proc. IEEE PIMRC, San Diago, Sept. 2001, pp. 1—5.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔