(3.238.186.43) 您好!臺灣時間:2021/03/01 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:俞齊山
研究生(外文):Chi-Shan Yu
論文名稱:相量量測技術在特殊輸電系統故障定位與穩定度控制應用
論文名稱(外文):Applications of Phasor Measurement Technique to Special Transmission System Fault Location and Stability Control
指導教授:劉志文劉志文引用關係
指導教授(外文):Chih-Wen Liu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:237
中文關鍵詞:相量量測單元彈性交流輸電系統改良式離散傅立葉轉換閘控串聯補償器故障定位自我調適降階模型迴授線性法慣量中心
外文關鍵詞:Phasor Measurement UnitFlexible AC Transmission SystemExtended Discret Fourier TransformThyristor Controlled Series CompensatorFault LocationSelf-Correction Reduced Order ModelFeedback LinearizationCenter of Inertia
相關次數:
  • 被引用被引用:12
  • 點閱點閱:306
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究相量量測技術在特殊輸電系統故障定位與穩定度控制的應用。為了正確的計算含有串聯補償之輸電線故障訊號的基頻相量,本論文提出適用於此類訊號的改良式離散傅立葉轉換演算法。利用此一演算法可以快速的計算出故障訊號之中的基頻成分。對於架設有串聯補償裝置的輸電線之故障定位計算,本論文提出一種以同步相量量測單元為基礎的新型故障定位演算法。此一演算法不需要利用串聯元件在故障時之模型即可計算出精確的定位結果。本故障定位演算法比起傳統之雙端演算法可以更容易的計算出定位的結果。此外此一演算法可以適用於不同種類的串聯補償輸電線之故障定位計算。對於暫時架設的T型輸電網路,本論文提出一種以同步相量量測單元為基礎的新型故障定位演算法。此一演算法不需要知道T分支在故障時的模型即可計算出精確的定位計算。因此,此一演算法可以適用於含有任何種類T分支之故障定位計算。對於多機串聯補償輸電系統的暫態穩定度控制問題,本論文首先提出一種以同步相量量測為基礎的自我調適降簡化模型。此一模型僅需利用線上的即時量測訊號即可建立。此外亦可隨時利用線上的即時量測訊號修正本簡化模型的誤差。同時,此一簡化模型的建立不需要任何的小訊號近似技巧。所以本簡化模型非常適合於非線性適應控制理論的應用。在本論文之中利用此一簡化模型成功的將非線性控制理論之中的迴授線性化控制法應用到多機含串聯補償輸電系統的暫態穩定度控制問題之中。而模型之中的自我調適功能正好提供了迴授線性化控制法極佳的強健性。由各章節的模擬結果可知本論文所提出的各項演算法均可提供令人滿意的結果。
The purpose of this dissertation is to study the application of phasor measuring technique to special transmission system fault location and stability control. In order to compute the accurate fundamental phasor of faulted signals of series compensated transmission lines, an Extended Discrete Fourier Transform algorithm is proposed. Via the algorithm, the phasor of fundamental frequency can be achieved very fast. For the fault location computation of series compensated transmission lines, a new Phasor Measurement Unit (PMU) based fault location algorithm is proposed. The proposed fault location algorithm does not need the series compensation device model to compute the fault location. Thus, via the proposed algorithm, accurate fault location computing can be more easily achieved than the conventional techniques do. Moreover, the proposed fault location algorithm can be easily applied to any other types of series compensated lines. For the fault location computation of transmission lines tapped with short interim leg, a new PMU based fault location algorithm is also proposed. The proposed fault location algorithm does not require the knowledge of tapped leg in fault period to compute the fault location. Thus, the proposed fault location algorithm can be easily applied to the transmission lines tapped with any types of legs. For the multi-machine series compensated transmission system stability control problem, a new PMU based self-correction reduced order model is proposed. The proposed model is constructed and corrected through the on-line real-time measurements from PMU. Moreover, small signal approximation is not used in developing the proposed model. Thus, the proposed model is very suitable to nonlinear adaptive control problems. Via the proposed self-correction reduced order model, the feedback linearization technique is successfully applied to the multi-machine series compensated transmission system transient stability control problem. The self-correction feature in the proposed model also supports the robust behavior to the feedback linearization technique. All of the algorithms mentioned above are evaluated by simulations. The simulation results show all of the proposed algorithms are useful and effective.
第一章 緒論 1
1.1研究動機…………………………………………………………1
1.2文獻回顧與研究目的…………………………………………..3
1.2.1數位濾波以及輸電線故障定位問題…………………….4
1.2.2穩定度控制問題………...………………………………..12
1.3研究貢獻….…………………………………………………….14
1.4論文內容….…………………………………………………….16
第二章 閘控串聯補償器與同步相量量測單元18
2.1 本章簡介……………………………..…………………………..18
2.2 閘控串聯補償器….……………………………………………..18
2.2.1 簡介…………..……………………………………………18
2.2.2 閘控串聯補償器之穩態特性….………………………..19
2.2.3 閘控串聯補償器之動態特性………….………………..21
2.2.4 閘控串聯補償器的過電壓保護設備….……………….21
2.2.5 小結…………………………………………..……………24
2.3 同步相量量測單元….…………………………………………..29
2.3.1 簡介..………………………………………………………29
2.3.2 同步相量量測系統的基本組成與架構……………….29
2.4 離散傅立葉轉換法應用於串聯補償輸電線之改良….……..33
2.4.1 簡介….…………………………………………………….33
2.4.2 傳統離散傅立葉轉換演算法….………………………..33
2.4.3 故障信號的分析………..………………………………..35
2.4.4 指數衰減直流成分對於故障定位之影響…………….36
2.4.5 次同步共振成分對於故障定位之影響…….………….38
2.4.6 對於傳統離散傅立葉轉換演算法的改良…………….40
2.4.7 實際設計時之注意事項…...……………………………55
2.4.8 EDFT濾波效能模擬驗證………………………………..66
2.4.9 小結….…………………………………………………….69
第三章 PMU在故障定位計算之應用71
3.1 本章簡介….………………………………………………………71
3.2 串聯補償輸電線之新型故障定位演算法….…………………71
3.2.1 簡介….…………………………………………………….71
3.2.2 系統架構………………………………………………….72
3.2.3 故障定位演算法…..……………………………………..74
3.2.4 故障側選擇器之證明..……………………………….....90
3.2.5 判定輸入的故障型態是否正確………………………..92
3.2.6 性能評估………………………………………………….93
3.2.7 討論….…………………………………………………..113
3.2.8 小結….…………………………………………………..116
3.3 T型架構輸電線新型故障定位演算法……….………………118
3.3.1 簡介……….……………………………………………..118
3.3.2 故障定位演算法………………………………………..119
3.3.3 性能評估……..………………………………………….129
3.3.4 小結………………………………………………………136
第四章 PMU在串聯補償輸電系統穩定度控制問題之應用150
4.1 本章簡介………………………………………………………..150
4.2 自我調適降階簡化模型………..……………………………..150
4.2.1 簡介………………………………………………………150
4.2.2 基本型降階簡化模型…..………………………………151
4.2.3 自我調適型降階簡化模型的設計…..………………..157
4.2.4 應用至多區域的電力系統…………………………….162
4.2.5 迴授信號的合成….…………………………………….163
4.2.6 與其它降階模型的比較……………………………….166
4.2.7 小結..…………………………………………………….169
4.3 新型適應性控制器..…………………………………………..171
4.3.1 簡介...……………………………………………………171
4.3.2迴授線性化理論及其應
用至電力系統之問題..…………………………………171
4.3.3以降階模型為基礎所設計之
新型適應性控制器……………………………………..175
4.3.4 實際TCSC控制命令的考慮…………………………...180
4.3.5 強健性分析..…………………………………………….182
4.3.6 模擬分析..……………………………………………….183
4.3.7 討論..…………………………………………………….202
4.3.8 小結..…………………………………………………….203
第五章 結論與未來研究方向209
5.1 結論..…………………………………………………………….209
5.2 未來研究方向..…………………………………………………211
附錄
A 模擬程式介紹…………………………………………………..213
B SAHA所提出之故障側選擇法的問題 ……………………..222
參考文獻224
作者簡歷239
著作240
參考文獻
[1].N. G. Hingorani, “Flexible AC Transmission,” IEEE Spectrum, pp.40-45, April 1993.
[2].EPRI Report EL-6943, Flexible AC Transmission Systems (FACTS): Scoping Study, Vol 1, Part 1: Analytical Studies, Final report of project 3022-1, prepared by Power Technologies Inc. August 1990.
[3].EPRI Report EL-6943, Flexible AC Transmission Systems (FACTS): Scoping Studying, Vol 2, Part 1: Analytical Studies, Final report of project 3022-2, prepared by General Electric Company, September 1991.
[4].D. Wells, Guide to GPS Positioning, Canadian GPS Associates, May 1987.
[5].A. G. Phadke, “Synchronized Phasor Measurements in Power Systems,” IEEE Computer Applications in Power, vol.62, April 1993, pp.10-15.
[6].楊俊哲,『以全球定位系統為基礎之同步相量量測單元之研製』,國立台灣大學電機所碩士論文,中華民國八十六年六月。
[7].塗同銘,『高性能同步相量量測器設計與製作』,國立台灣大學電機所碩士論文,中華民國八十七年六月。
[8].E. V. Larson, K. Clark, S. A. Miske, and J. Urbanek, “Characteristics and rating considerations of thyristor controlled series compensation,” IEEE Transactions on Power Delivery, vol.9, no.2, 1994, pp.992-1000.
[9].N. K. Dmitry and J. K. Wojtek, “Bang-Bang series capacitor transient stability control,” IEEE Transactions Power Systems, Vol.10, No.2, 1995, pp.915-924.
[10].D. N. Kosterev, W. J. Kolodziej, etc, “Robust Transient Stability Control Using Thyristor-Controlled Series Compensation,” 4th IEEE Conference on Control Application, 1995, pp.215-220.
[11].G. N. Taranto, J. -K. Shiau, J. H. Chow, and H. A. Othman, "Robust decentralised design for multiple FACTS damping controllers," IEE Proc-Gener. Transm. Distrib , Vol.144, No.1, January 1997, pp. 61-67.
[12].E. V. Larson, J. J. Sanchez-Gasca and J. H. Chow, “Concept for Design of FACTs Controllers to Damp Power Systems,” IEEE Transactions on Power Systems, Vol.10, No.2, May 1995, pp.948-956.
[13].羅天賜,『應用閘控串聯補償器增進電力系統動態穩定度』,國立台灣大學電機所博士論文,1998
[14].T. S. Luor, Y. Y. Hsu, T. Y. Guo, J. T. Lin and C. Y. Huang, “Application of Thyristor-Controlled Series Compensators to Enhance Oscillatory Stability and Transmission Capability of a Longitudinal Power System,” IEEE Transactions on Power Systems, Vol.14, No.1, February, 1999, pp.179-185.
[15].Y. L. Tan, Y. Wang, "Robust nonlinear design for transient stabilization using series power flow compensator," International Journal of Electrical Power & Energy Systems, Vol.19, No.6, 1997, pp.367-374.
[16].X. Zhou and J. Liang, “Nonlinear Adaptive Control of TCSC to Improve the Performance of Power Systems,” IEE Proc.-Gener. Transm. Distrib., Vol.146, No.3, May 1999, pp.301-305.
[17].J. Chang and J. H. Chow, “Time-Optimal Series Capacitor Control for Damping Interarea Modes in Interconnected Power Systems,” IEEE Transactions on Power Systems, Vol.12, No.1, February 1997, pp.215-221.
[18].J. Chang, and J. H. Chow, “Time-optimal control of power systems requiring multiple switchings of series capacitors,” IEEE Transactions on Power Systems, Vol.13, No.2, 1998, pp.367-373.
[19].X. R. Chen, N. C. P, U. D. Annakkage and C. S. Kumble, “Design of Decentralised Output Feedback TCSC Damping Controllers by Using Simulated Annealing,” IEE Proc.-Gener. Transm. Distrib., Vol.145, No.5, September 1998, pp.553-558.
[20].X. R. Chen, N. C. Pahalawaththa, U. D. Annakkage and C. S. Kumble, “Enhancement of Power System Stability by using Controlled Series Compensation,” International Journal of Electrical Power & Energy Systems, Vol.18, No.7, 1996, pp.475-481.
[21].X. Zhou and J. Liang, “Overview of Control Schemes for TCSC to Enhance the Stability of Power Systems,” IEE Proc.-Gener. Transm. Distrib., Vol.146, No.2, March 1999, pp.125-129.
[22].M. Noroozian, G. Andersson and K. Tomsovic, “Robust, Near Time-Optimal Control of Power System Oscillations with Fuzzy Logic,” IEEE Transactions on Power Delivery, Vol.11, No.1, January 1996, pp.393-400.
[23].R. J. Nelson and S. L. Williams, ''Transmission series power flow control '', IEEE Transactions on Power Delivery, vol. 10, no. 1, Jan., 1995, pp.504-510.
[24].C. Praing, T. Tran-Quoc, R. etc, “Impact of FACTS Devices on Voltage and Transient Stability of a Power System Including Long Transmission Lines,” IEEE PES Summer Meeting, Vol.3, 2000, pp.1906-1911.
[25].P. M. Anderson, B. L. Agrawal and J. E. Van Ness, Subsynchronous Resonance in Power Systems, IEEE Press, 1989.
[26].黃瓊誼,張忠良,陳永田,黃江滄,”閘控串聯電容器應用於台電輸電系統之分析,” 第15屆電力研討會論文集,1994。
[27].Christl N., Hedln R., Johnson R., Krause P. and Montoya A., “Power system studies and modeling for the kayenta 230KV substation advanced series compensation”, IEE International Conference, 1991, pp.33-37.
[28].J. Urbanek, R. J. Piwko, B. L. Damsky, B. C. Furumasu and W. Mittlestadt, “Thyristor controlled series compensation prototype installation at the slatt 500KV substation”, IEEE Transactions on Power Delivery, Vol.8, No.3, July 1993, pp.1460-1469.
[29].A. A. Girgis, D. G. Hart. and W. L. Peterson, “A New Fault Location Technique for Two- and Three- Terminal Lines”, IEEE Transactions on Power Delivery, Vol.7, No.1, January 1992, pp. 98-107.
[30].R. K. Aggarwal, et. al., “A Practical Approach to Accurate Fault Location on Extra High Voltage Teed Feeders”, IEEE Transactions on, Power Delivery, Vol.8, No.3, 1993, pp.874-883.
[31].G. Qingwu, et al, “A Study of the Accurate Fault Location System for Transmission Line Using Multi-Terminal Signals”, IEEE Winter Meeting, 2000.
[32].M. M. Saha J. Izykowski, E. Rosolowski and B. Kasztenny, “A new accurate fault locating algorithm for series compensated lines”, IEEE Transactions on Power Delivery, Vol.14, No.3, July 1999, pp.789-797.
[33].J. Sadeh, N. Hadjsaid, A. M. Ranjbar and R. Feuillet, “Accurate Fault Location Algorithm for Series Compensated Transmission Lines,” IEEE Transactions on Power Delivery, Vol.15, No.3, July 2000, pp.1027-1033.
[34].M. Coursol, C. T. Nquyen, R. Lord and Y. D. Do, “Modeling MOV-Protected Series Capacitors for Short-Circuit Studies,” IEEE Transactions on Power Delivery, Vol.8, No.1, January 1993, pp.448-453.
[35].M. Kezunovic, M. Aganagic, S. Mckenna and D. Hamai, “Computing Response of Series Compensation Capacitors with MOV Protection in Real-Time,” IEEE Transactions on Power Delivery, Vol.10, No.1, January 1995, pp.244-251.
[36].F. Ghassemi, J. Goodarzi and A. T. Johns, “Method to improve digital distance relay impedance measurement when used in series compensated lines protected by a metal exide Varistor”, IEE Proc-Gener. Transm. Distrib. Vol.145, No.4, July 1998, pp.403-408.
[37].W. Wang, X. Yin, J. Yu, X. Duan and D. Chen, “The Impact of TCSC on Distance Protection Relay,” Proceedings of POWERCON, Vol.1, 1998, pp.382-388.
[38].D. L. Goldswortyh, “A linearized model for MOV-protected series capacitors”, IEEE Transactions on Power Systems, Vol.2, No.4, November 1987, pp.953-958.
[39].E. Rosolowski, J. Izykowski, etc, “Differential Equation Based Impedance Measurement for Series-Compensated Lines,” International Conference on PowerTech Budapest 99, 1999, pp.205.
[40].于尚禮,『改良式傅立葉濾波演算法應用於串聯補償傳輸線之故障定位』,國立臺灣科技大學電機所博士論文,2001。
[41].L. Eriksson, et al, “An Accurate Fault Locator with Compensation for Apparent Reactance in the Fault Resistance Resulting from Remote-End Infeed,” IEEE Transactions on PAS, Vol. PAS-104, No.2, February 1985, pp.424-436.
[42].Q. Zhang, Y. Zhang, W. Song and Y. Yu, “Transmission Line Fault Location for Phase-to Earth Fault Using One-Terminal Data,” IEE Proc-Gener. Transm. Distrib., Vol.146, No.2, March 1999, pp.121-124.
[43].A. T. Johns, et al, “Accurate Fault Location Technique for Power System Lines”, IEE. Proc. Pt.C, Vol.137 Nov. 1990, pp.395-402,.
[44].M. Kezunovic, J. Mrlic and B. Perunicic, “An accurate fault location algorithm using synchronized sampling”, Electric Power Systems Research, Vol.2, 1994, pp.161-169.
[45].D. Novosel et al, “Unsynchronized Two-Terminal Fault Location Estimation,” IEEE PES Winter Meeting, New York, Jan. 95WM025-7 PWRD, 1995.
[46].J. A. Jiang, J. Z. Yang, Y. H. Lin, C. W. Liu and J. C. Ma, “An adaptive PMU based fault detection/location technique for transmission lines, Part I: Theory and algorithms”, IEEE Transactions on Power Delivery, Vol.5, No.4, October 2000, pp.1136-1146.
[47].J. A. Jiang, Y. H. Lin, J. Z. Yang, T. M. Too and C. W. Liu, “An adaptive PMU based fault detection/location technique for transmission lines, Part II: PMU implementation and performance evaluation”, IEEE Transactions on Power Delivery, Vol.5, No.2, April 2000, pp.486-493.
[48].江昭皚著,『以同步相量測單元為基礎之輸電線適應型保護電驛之研製』,國立臺灣大學電機所博士論文,民國八十八年十月。
[49].G. Missout and P. Girard, “Measurement of Bus Voltage Angle Between Montreal and Sept-Iles,” IEEE Transactions on PAS, Vol.PAS-99, No.2, March/April 1980, pp.536-539.
[50].C. T. Nguyen and K. Srinivasan, “A New Technique for Rapid Tracking of Frequency Deviations Based on Level Crossings,” IEEE Transactions on PAS, Vol.PAS-103, No.8, August 1984, pp.2230-2236.
[51].M. S. Sachdev and M. M. Giray, “A Least Error Squares Technique for Determining Power Fystem Frequency,” IEEE Transactions on PAS, Vol.PAS-104, No.2, February 1985, pp.437-443.
[52].M. M. Begovic, P. M. Djuric, S. Dunlap, A. G. Phadke, “Frequency Tracking in Power Networks in the Presence of Harmonics,” IEEE Transactions on Power Delivery, Vol.8, No.2, April 1993, pp.480-486.
[53].V. V. Terzija, M. B. Djuiric, B. D. Kovacevic, “Voltage Phasor and Local System Frequency Estimation Using Newton Type Algorithm,” IEEE Transactions on Power Delivery, Vol.9, No.3, July 1994, pp.1368-1374.
[54].T. Lobos and J. Rezmer, “Real-Time Determination of Power System Frequency,” IEEE Transactions on Instrumentation and Measurement, Vol.46, No.4, August 1997, pp.877-881.
[55].A. G. Phadke, J. S. Thorp, M. G. Adamiak, “A New Measurement Technique for Tracking Voltage Phasors, Local System Frequency, and Rate of Change of Frequency,” IEEE Transactions on PAS, Vol.PAS-102, No.5, May 1983 p.1025-1038.
[56].J. Z. Yang and C. W. Liu, “A Precise Calculation of Power System Frequency and phasor”, IEEE Transactions on Power Delivery, Vol.5, No.2, April 2000, pp.494-499.
[57].J. Z. Yang and C. W. Liu, “A Precise Calculation of Power System Frequency,” IEEE Transactions on Power Delivery, Vol.16, No.3, July 2001, pp.361-366.
[58].J. Z. Yang, C. W. Liu., “Complete Elimination of DC offset in current signals for relaying applications”, IEEE Winter Meeting, Vol.3, 2000, pp.1933-1938.
[59].楊俊哲,『應用於電力系統相量及頻率量測之新型數位演算法』,國立台灣大學電機所博士論文,1999。
[60].J. C. Gu and S. L. Yu, “Removal of DC Offset in Current and Voltage Signals Using a Novel Fourier Filter Algorithm,” IEEE Transactions on Power Delivery, Vol.15, No.1, January 2000, pp. 73-79.
[61].S. L. Yu and J. C. Gu, “Removal of Decaying DC in Current and Voltage Signals Using a Novel Fourier Filter Algorithm,” IEEE Transactions on Power Delivery, Vol.16, No.3, July 2001, pp. 372-379.
[62].N. T. Stinger, “The effect of DC offset on current-operated relays,” IEEE Transactions on Industry Applications, vol.34, no.1, January/February 1998, pp.30-34.
[63].A. G. Phadke and J. S. Thorp, Computer Relaying for Power Systems, John Wiley & Sons, New York, 1988.
[64].S. H. Horowitz and A. G. Phadke, Power System Relaying, second edition, Research Studies Press, Ltd., London, 1995.
[65].A. T. Johns and S. K. Salma, Digital Protection for Power Systems, Peter Peregrinus Ltd., 1995.
[66].IEEE Standard for Series Capacitors in Power Systems, IEEE Std824-1985, p.18.
[67].D. Novosel, B. Bachmann, Y. Hu and M. M. Saha, “Algorithm for location faults on series compensated lines using neural network and deterministic methods”, IEEE Transactions on Power Delivery, Vol.11, No.4, October 1996, pp.1728-1736.
[68].M. E. Hamt, L. L. Lai, D. J. Daruvala and A. T. Johns, “A New Travelling-Wave Based Scheme for Fault Detection on Overhead Power Distribution Feeders,” IEEE Transactions on Power Delivery, Vol.7, No.4, October 1992, pp.1825-1833.
[69].B. Lian and M. M. A. Salama, “An overview of digital fault location algorithm for power transmission lines using transient waveforms”, Electric Power Systems Research, Vol.29, 1994, pp.17-25.
[70].A. K. S. Chaudhary, K. S. Tam and A. G. Phadke, “Protection system representation in the electromagnetic transient program”, IEEE Transactions on Power Delivery, Vol.9, No.2, April 1994, pp.700-711.
[71].Q. Lu and Y. Z. Sun, "Nonlinear stabilizing control of multimachine systems," IEEE Transactions on Power Systems, Vol.4, No.1, 1989, pp.236-241.
[72].L. Gao, L. Chen, Y. Fan and H. Ma, "DFL-Nonlinear control design with applications in power systems," Automatica, Vol.28, 1992, pp.975-979.
[73].G. Guo, Y. Wang, etc, “Robust Nonlinear Controller for Power System Transient Stability Enhancement with Voltage Regulation,” IEE Pro- Gener. Transm. Distrib., Vol.143, No.5, September 1996, pp.407-412.
[74].D. K. Lee, T. W. Yoon, B. Lee and G. T. Park, “Adaptive Nonlinear Control of a Power System,” Proceedings of the 1998 IEEE International Conference on Control Application, Trieste, Italy, 1-4 September 1998, pp.1240-1244.
[75].D. N. Kosterev and W. J. Kolodziej, “Robust Control for Transient Stabilization of Interconnected Power Systems,” Second IEEE Conference on Control Application, Vol.2, September 13-16, 1993, pp.879-884.
[76].W. J. Kolodziej, D. N. Kosterev, W. Zhu, “Robust Control for Power System Transient Stability,” Porc. American Control Conference, 1993, pp.2076-2080.
[77].P. W. Sauer and M. A. Pai, Power system dynamics and stability, Prentice-Hall, Inc., 1998.
[78].P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa State University Press, 1977.
[79].J. Machowski, J. W. Bialek and J. R. Bumby: Power System Dynamics and Stability, John Wiley, 1997.
[80].A. Ghosh and G. Ledwich, “Modeling and control of thyristor controlled series compensators,” IEE Proc-Gener. Transm. Distrib., vol.142, no.3, 1995, pp.297-304.
[81].S. G. Jalali, R. H. Lasseter and I. Dobson, “Dynamic Response of a Thyristor Controlled Switched Capacitor,” IEEE Transactions on Power Delivery, Vol.9, No.3, 1994, pp.1609-1615.
[82].J. J. Paserba, N. W. Miller, E. V. Larsen, and R. J. Piwko, “A thyristor-controlled series compensation model for power system stability analysis,” IEEE Transactions on Power Delivery, vol.10, no.3, 1995, pp.1471-1478.
[83].H. G. Han, J. K. Park and B. H. Lee, “Analysis of Thyristor Controlled Series Compensator Dynamics Using the State Variable Approach of a Periodic System Model,” IEEE Transactions on Power Delivery, Vol.12, No.4, October 1997, pp.1744-1750.
[84].Y. Tanaka, H. Taniguchi, M. Egawa, H. Fujita, M. Watanabe and H. Konishi, “Using a miniature model and EMTP simulations to evaluate new methods to control and protect a thyristor-controlled series compensator”, IEEE Winter Meeting 1999.
[85].J. R. Rice, Numerical Methods, Software, and Analysis, Academic Press Inc., San Diego, 1993.
[86].H. Dommel., Electromagnetic Transient Program, BPA, Portland, Oregon, 1986.
[87].A. Biran and M. Breiner, MATLAB® for Engineers, Addison-Wesley Publishing Company, 1996.
[88].P. Kundur, Power System Stability and Control, EPRI, McGraw Hill, 1994.
[89].H. Chen and G. Andersson, “A Versatile Approach for the Control of FACTS Equipment in Multimachine Power Systems,” International Journal of Electrical Power & Energy Systems, Vol.17, No.3, 1995, pp.215-221.
[90].M. Vidysagar, Nonlinear Systems Analysis, Prentice-Hall, 1993.
[91].J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, 1991.
[92].R. D Barnard,. “Optimal-aim control strategies applied to large-scale, nonlinear regulation and tracking system,” IEEE. Transactions on Circuit and System,Vol.23, 1976, pp.800-806.
[93].X. Y. Li, Y. H. Song, X. C. Liu, and J. Y. Liu, “Nonlinear optimal-variable-aim strategy for improving multimachine power system transient stability,” IEE. Proc-Gener. Transm. Distrib., vol.143, no.3, 1996, pp.249-252.
[94].E. W. Palmer, G. Ledwich, "Optimal Placement of Angle Transducers in Power Systems," IEEE Transactions on Power Systems, Vol.11, No2, 1996, pp.788-793.
[95].Shinn-Shyong Wang, Stability Analysis and Control of PWM Switched Mode Power Converters, 國立清華大學電機所博士論文, Jun 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔