(3.238.7.202) 您好!臺灣時間:2021/03/03 22:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林慶波
研究生(外文):Ching-Po Lin
論文名稱:非等向性擴散核磁共振影像於神經細胞結構之研究
論文名稱(外文):MRI of Neural Fiber Architecture Based on Diffusion Anisotropy
指導教授:曾文毅曾文毅引用關係陳志宏陳志宏引用關係
指導教授(外文):Wen-Yih Isaac TsengJyh-Horng Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:104
中文關鍵詞:擴散核磁共振影像擴散張量核磁共振影像擴散譜核磁共振影像神經細胞結構
外文關鍵詞:diffusion MRIdiffusion tensor MRIdiffusion spectrum MRIneural cytoarchitecture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
藉由水分子在排列整齊之生物組織內進行擴散而產生的信號變化,擴散性磁振影像(diffusion MRI)提供了以擴散的非等向來觀察神經細胞結構之可行性,隨著擴散張量磁振影像 (diffusion tensor MRI)及擴散譜磁振影像 (diffusion spectrum MRI)之發展,大腦神經白質結構及連結得以非侵入性影像方式具體研究,然而這類研究始終沒有一個標準以證明其定義神經結構之正確性,同時研究僅侷限於大腦白質結構,至於大腦灰質結構則由於複雜性太高,傳統影像方法皆無法取得。有鑑於此,本論文提出了一個老鼠模型及實驗假體模型以驗證擴散張量磁振影像及擴散譜磁振影像之正確性,並提出以擴散譜磁振影像研究大腦灰質之可行性。
以往擴散張量磁振影像之證明侷限於侵入式的組織切片對比,然而這類證明由於複雜組織切片處理過程所導致的誤差,始終無法提供精確的正確性估計,更遑論三度空間神經結構之描述與證明。本論文提出動物模型克服這項問題,利用錳離子注射產生磁振對比影像,成功地證明擴散張量磁振影像與擴散譜磁振影像描繪神經方向之正確性,並證明擴散譜磁振影像描繪神經交會之正確性;結果顯示擴散張量磁振影像僅可描繪單神經走向,而擴散譜磁振影像可正確地描繪單神經或複雜神經之走向,其誤差幾近於雜訊邊緣。藉此特性,我們得以進一步地以擴散譜磁振影像描繪複雜神經細胞結構以及灰質與白質之神經連結。
對於大腦灰質複雜之神經結構,以往只能以光學式或電子式的顯微鏡來研究觀察,然而這類研究均必須以侵入方式取得組織樣本,並經由繁瑣的組織切片方式獲得實驗標本,再以不同的染色方式顯現所需要之神經結構,雖然如此可獲得非常高解析度之影像品質,卻無法適用於活體體內,亦難達到三度空間之神經結構研究,嚴重限制了這類技術的實用範圍。
本論文以老鼠海馬回 (hippocampus) 為研究試驗標的,成功地以擴散譜磁振影像技術獲得老鼠海馬回之大腦神經細胞結構,並與傳統組織切片方式對照,清楚地分辨海馬回中不同層次之組織結構;因為本技術可於體內以非侵入性之影像方式獲得複雜的神經細胞結構,使這項技術極具應用價值,也由於本技術可直接體外取得,避免了切片處理的限制,更促進了三度空間神經結構研究之進行。
本論文第一個成功地建立實驗模型,驗證擴散張量磁振影像與擴散譜磁振影像之正確性,並第一個證明擴散譜磁振影像可成功地獲得大腦複雜之神經細胞結構。放眼未來,我們所建立之實驗模型將可繼續為建立神經連結理論之發展與驗證,及擴散譜磁振影像技術作最佳使用。而擴散譜磁振影像於神經細胞結構之突破,未來亦可對大腦灰白質神經聯結、大腦發展或病變過程神經結構變化、腦部功能性與神經聯結等研究進一步發展作貢獻。

This dissertation will validate, optimize and apply diffusion magnetic resonance imaging (diffusion MRI) to map complex neural fiber architecture in rat brain. With the powerful concept that molecules can probe tissue structure at a microscopic scale during their diffusion-driven displacement, diffusion MRI provides and characterizes exquisite details of tissue microstructure. In an interested tissue such as brain, molecules bounce, cross, or interact with many tissue components such as cell membranes, fibers, or macromolecules will exhibit different signal characters under diffusion MRI encoding. Following the emergence of diffusion tensor MRI (DTI) and recent advance in diffusion spectrum MRI (DSI), orientations of organized microstructures can be studied and observed in vivo based on the anisotropy of water molecular diffusion.
To obtain an exact description of tissue microstructure and the correct connectivity of neural fiber tracts in vivo, a gold standard for validating the accuracy of DTI and DSI is important but still lacking. This dissertation presents the first validation of DTI and DSI with co-registered manganese-enhanced MRI. A rat model was developed in which optic tracts were enhanced by manganese. Deviation angles between tangential vectors of the enhanced tracts and the principal eigenvectors of the diffusion tensor or the principal orientations of the diffusion spectrum were computed pixel by pixel. In this way, the accuracy of DTI or DSI in defining axonal fiber orientation was determined. In addition, a phantom model with intersecting water-filled capillaries was designed to show the capability of DSI to infer tract orientations and validate the accuracy of DSI in defining intersecting fiber tracts. Owing to model-free of DSI and the character that DSI describes the three-dimensional spin displacement within each imaging voxel, our results showed that DSI provides details of tissue microstructure more faithfully than diffusion weighted MRI or DTI.
Using this powerful feature of DSI, we found that complex neural cytoarchitecture in cortical gray matter could be studied and resolved without pushing the spatial resolution to the level comparable with the tissue of interest. Such complex fiber structures in cortical gray matter, due to interdigitation, were difficult or impossible to identify individually with conventional MRI methods. This dissertation proposed the first study of complex neural cytoarchitecture of cortical gray matter in vivo. Rat hippocampus was studied as a “test pattern” owing to its well-known neural structures. With in-plane resolution of 180 mm, DSI showed that this technique could reveal detailed axonal fiber microstructure successfully, in consistent with cytoarchitecture study in histology. In the future, this capability would be very useful in the study of connectivity between the gray matter and the white matter.

1.Introduction
1-1 Background
1-2 Diffusion Measurement by NMR
1-2-1 NMR pulsed gradient diffusion measurement
1-2-2 Diffusion tensor magnetic resonance imaging
1-2-3 Diffusion spectrum magnetic resonance imaging
1-3 Outline
2.Validation of Diffusion Tensor Magnetic Resonance Axonal Fiber Imaging
with Registered Manganese-enhanced Optic Tracts
2-1 Introduction
2-2 Materials and Methods
2-2-1 Rat model
2-2-2 Imaging techniques
2-2-3 Diffusion tensor reconstruction
2-2-4 Registration techniques
2-2-5 Deviation angles
2-2-6 Variance analysis
2-3 Results
2-3-1 Mn2+-enhanced optic tracts and DTI
2-3-2 Deviation angles
2-3-3 Noise estimate
2-4 Discussion
2-4-1 Validation of DTI using Mn2+-enhanced optic tracts
2-4-2 Rationales of using Mn2+-enhanced optic tracts as a reference
2-4-3 Limitations
2-4-4 Error estimate
2-4-5 Application of Mn2+-enhanced optic tracts in validating diffusion tractography
2-5 Conclusion
3.Validation of Diffusion Spectrum Magnetic Resonance Axonal Fiber Imaging with Registered Manganese-enhanced Optic Tracts and Phantom Model
3-1 Introduction
3-2 Materials and Methods
3-2-1 Rat model and phantom design
3-2-2 Imaging techniques
3-2-3 Diffusion spectrum and diffusion tensor reconstruction
3-2-4 Registration techniques
3-2-5 Deviation angles
3-2-6 Optimization for DSI data acquisition
3-3 Results
3-3-1 Rat model
3-3-2 Phantom model
3-3-3 Deviation angles
3-3-4 Optimization for DSI data acquisition
3-4 Discussion
3-4-1 Rationales of using DSI to depict axonal fiber orientations
3-4-2 Validation of DSI using Mn2+-enhanced optic tracts and phantom model
3-4-3 Rationales of using Mn2+-enhanced optic tracts as a reference
3-4-4 Rationales of using water-filled capillaries as a reference
3-4-5 Limitations for phantom model
3-4-6 Error estimate
3-4-7 Optimization for DSI data acquisition
3-5 Conclusion
4.Diffusion Spectrum Imaging of Complex Neural Cytoarchitecture in Adult Rats
4-1 Introduction
4-2 Materials and Methods
4-2 1 Rat sample preparation
4-2-2 Imaging techniques
4-2-3 Diffusion spectrum and diffusion tensor reconstruction
4-2-4 DSI visualization
4-3 Results
4-3-1 DSI of complex neural cytoarchitecture in rat hippocampus
4-3-2 Comparison between DSI and DTI
4-4 Discussion
4-4-1 DSI of complex neural cytoarchitecture
4-4-2 Rationales of DSI in resolving complex neural cytoarchitecture
4-4-3 Limitations of DSI in resolving neural cytoarchitecture
4-4-4 DSI Visualization
4-5 Conclusion
5.Conclusions
5-1 Summary
5-2 Discussion
5-2-1 Reduction of data acquisition time
5-2-2 Increasing the imaging resolution
5-2-3 Neural architecture characterization using DSI
5-2-4 DSI of human brain
5-3 Conclusion
5-4 Future Work
Bibliography

1.Paulson, O.B., Hertz, M.M., Bolwig, T.G., and Lassen, N.A., Filtration and diffusion of water across the blood-brain-barrier in man. Microvasc Res, 1977. 13: p. 113-124.
2.Nicholson, C. and Phillips, J.M., Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. Journal Physiol., 1981. 321: p. 225-257.
3.Le Bihan, D., Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed, 1995. 8(7-8): p. 375-86.
4.Hahn, E.L., Spin echoes. Physical Review, 1950. 80(4): p. 580-594.
5.Carr, H.Y. and Purcell, E.M., Effects of diffusion on free precession in nuclear magnetic resonance experiments. Journal of Chemical Physics, 1954. 94(3): p. 630-638.
6.Bloch, F., Nuclear induction. Physical Review, 1946. 70: p. 460-474.
7.Torrey, H.C., Bloch equations with diffusion terms. Journal of Chemical Physics, 1956. 104(3): p. 563-565.
8.Le Bihan, D. and Basser, P.J., Molecular diffusion and nuclear magnetic resonance. Diffusion and perfusion magnetic resonance imaging: applications to functional MRI, ed. D. Le Bihan. Vol. Chapter 1. 1995, New York: Raven Press, Ltd. 5-17.
9.Stejskal, E.O. and Tanner, J.E., Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. Journal of Chemical Physics, 1965. 42(1): p. 288-292.
10.Wesbey, G.E., Moseley, M.E., and Ehman, R.L., Translational molecular self-diffusion in magnetic resonance imaging. I. Effects on observed spin-spin relaxation. Invest Radiol, 1984. 19(6): p. 484-90.
11.Wesbey, G.E., Moseley, M.E., and Ehman, R.L., Translational molecular self-diffusion in magnetic resonance imaging. II. Measurement of the self-diffusion coefficient. Invest Radiol, 1984. 19(6): p. 491-8.
12.Merboldt, K.D., Hanicke, W., and Frahm, J., Self-diffusion NMR imaging using stimulated echoes. Journal of Magnetic Resonance, 1985. 64: p. 479-486.
13.Le Bihan, D. and Breton, E., Imagerie de diffusion in vivo par resonance magnetique nucleaire. CR Acad Sci Paris, 1985. 301: p. 1109-1112.
14.Taylor, D.G. and Bushell, M.C., The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol, 1985. 30(4): p. 345-9.
15.Le Bihan, D., et al., MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986. 161(2): p. 401-7.
16.Warach, S., Chien, D., Li, W., Ronthal, M., and Edelman, R.R., Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology, 1992. 42(9): p. 1717-23.
17.Moseley, M.E., et al., Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med, 1990. 14(2): p. 330-46.
18.Murphy, J. and Doane, J., An NMR measurement of the diffusion anisotropy in a nematic liquid crystals. Molecular Crystal and Liquid Crystal, 1971. 13: p. 93-95.
19.Kruger, G. and Spiescke, H., Anisotropy of the diffusion coefficient in nematic liquid solutions measured by NMR techniques. Zeitschrift fur Naturforschung A (Astriphysik, physik und Physikalische Chemie), 1973. 28a: p. 964-967.
20.Ukleja, P. and Doane, J., The anisotropy of self-diffusion in the lamellar phase (using NMR). Ordering in Two Dimensions. 1980, Lake Geneva, WI, USA.
21.Callaghan, P., LeGros, M., and Pinder, D., The measurement of diffusion using deurerium pulsed field gradient nuclear magnetic resonance. Journal of Chemical Physics, 1983. 79: p. 6372-6381.
22.Cleveland, G.G., Chang, D.C., Hazlewood, C.F., and Rorschach, H.E., Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water. Biophys J, 1976. 16(9): p. 1043-53.
23.Moseley, M.E., et al., Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology, 1990. 176(2): p. 439-45.
24.Chenevert, T.L., Brunberg, J.A., and Pipe, J.G., Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology, 1990. 177(2): p. 401-5.
25.Turner, R., et al., Echo-planar imaging of intravoxel incoherent motion. Radiology, 1990. 177(2): p. 407-14.
26.Rutherford, M.A., et al., MR imaging of anisotropically restricted diffusion in the brain of neonates and infants. J Comput Assist Tomogr, 1991. 15(2): p. 188-98.
27.Sakuma, H., et al., Adult and neonatal human brain: diffusional anisotropy and myelination with diffusion-weighted MR imaging. Radiology, 1991. 180(1): p. 229-33.
28.Douek, P., Turner, R., Pekar, J., Patronas, N., and Le Bihan, D., MR color mapping of myelin fiber orientation. J Comput Assist Tomogr, 1991. 15(6): p. 923-9.
29.Basser, P.J., Mattiello, J., Turner, R., and Le Bihan, D. Diffusion tensor echo-planar imaging of human brain. in Proceedings of the SMRM. 1993. p. 584.
30.Basser, P.J., Mattiello, J., and LeBihan, D., Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B, 1994. 103(3): p. 247-54.
31.Basser, P.J., Mattiello, J., and LeBihan, D., MR diffusion tensor spectroscopy and imaging. Biophys J, 1994. 66(1): p. 259-67.
32.Le Bihan, D., et al., Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging, 2001. 13(4): p. 534-46.
33.Conturo, T.E., et al., Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A, 1999. 96(18): p. 10422-7.
34.Jones, D.K., Simmons, A., Williams, S.C., and Horsfield, M.A., Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med, 1999. 42(1): p. 37-41.
35.Mori, S., Crain, B.J., Chacko, V.P., and van Zijl, P.C., Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol, 1999. 45(2): p. 265-9.
36.Xue, R., van Zijl, P.C., Crain, B.J., Solaiyappan, M., and Mori, S., In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med, 1999. 42(6): p. 1123-7.
37.Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., and Aldroubi, A., In vivo fiber tractography using DT-MRI data. Magn Reson Med, 2000. 44(4): p. 625-32.
38.Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., and Di Chiro, G., Diffusion tensor MR imaging of the human brain. Radiology, 1996. 201(3): p. 637-48.
39.Werring, D.J., et al., The structural and functional mechanisms of motor recovery: complementary use of diffusion tensor and functional magnetic resonance imaging in a traumatic injury of the internal capsule. J Neurol Neurosurg Psychiatry, 1998. 65(6): p. 863-9.
40.Virta, A., Barnett, A., and Pierpaoli, C., Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magn Reson Imaging, 1999. 17(8): p. 1121-33.
41.Wiegell, M.R., Larsson, H.B., and Wedeen, V.J., Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology, 2000. 217(3): p. 897-903.
42.Mattiello, J., Basser, P.J., and Le Bihan, D., The b matrix in diffusion tensor echo-planar imaging. Magn Reson Med, 1997. 37(2): p. 292-300.
43.Bastin, M.E., Correction of Eddy Current-Induced Artefacts in Diffusion Tensor Imaging Using Iterative Cross-Correlation. Magnetic Resonance Imaging, 1999. 17(7): p. 1011-1024.
44.Calamante, F., Porter, D.A., Gadian, D.G., and Connelly, A., Correction for eddy current induced Bo shifts in diffusion-weighted echo-planar imaging. Magn Reson Med, 1999. 41(1): p. 95-102.
45.Porter, D.A., Calamante, F., Gadian, D.G., and Connelly, A., The effect of residual Nyquist ghost in quantitative echo-planar diffusion imaging. Magn Reson Med, 1999. 42(2): p. 385-92.
46.Papadakis, N.G., Xing, D., Huang, C.L., Hall, L.D., and Carpenter, T.A., A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J Magn Reson, 1999. 137(1): p. 67-82.
47.Bastin, M.E., Armitage, P.A., and Marshall, I., A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. Magn Reson Imaging, 1998. 16(7): p. 773-85.
48.Basser, P.J. and Pajevic, S., Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn Reson Med, 2000. 44(1): p. 41-50.
49.Martin, K.M., Papadakis, N.G., Huang, C.L., Hall, L.D., and Carpenter, T.A., The reduction of the sorting bias in the eigenvalues of the diffusion tensor. Magn Reson Imaging, 1999. 17(6): p. 893-901.
50.Pierpaoli, C. and Basser, P.J., Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med, 1996. 36(6): p. 893-906.
51.Tuch, D.S., Weisskoff, R.M., Belliveau, J.W., and Wedeen, V.J., High angular resolution diffusion imaging of the human brain, in Proceedings of ISMRM 8th Ann Meeting. 1999: Peiladelphia, USA. p. 321.
52.Tuch, D.S., Belliveau, J.W., and Wedeen, V.J. Probabilistic tractography using high angular resolution diffusion imaging (abstr). in Proceedings of ISMRM 9th Ann Meeting. 2000. p.
53.Poupon, C., et al., Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage, 2000. 12(2): p. 184-95.
54.Wedeen, V.J., et al. Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI. in Proceedings of ISMRM 9th Ann Meeting. 2000. Denvor, USA. p. 82.
55.Callaghan, P.T., Eccles, C.D., and Xia, Y., NMR microscopy displacements: k-space and q-space imaging. Journal of Physics E, 1988. 21: p. 820.
56.Callaghan, P.T., Principles of nuclear magnetic resonance microscopy. 1 ed. 1991: Oxford: Clarendon Press. 492.
57.Rye, D.B., Tracking neural pathways with MRI. Trends Neurosci., 1999. 22(9): p. 373-374.
58.Friston, K.J. and Frackowiak, R.S.J., Images of the future: a philosophical coda, in Human Brain Function, R.S.J. Frackowiak, K.J. Friston, C.D. Frith, R.J. Dolan, and J.C. Mazziotta, Editors. 1997, Academic Press: San Diego. p. 487-517.
59.Dejerine, Anatomie Des Centres Nerveux. 1895, Paris.
60.Turner, B., Mishkin, M., and Knapp, M., Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. Neurology, 1980. 191: p. 515-543.
61.Young, M., Scannell, J., and Burns, G., The analysis of cortical connectivity, neuroscience intelligence unit. 1995: Springer Verlag.
62.Pautler, R.G., Silva, A.C., and Koretsky, A.P., In vivo neuronal tract tracing using Manganese-enhanced magnetic resonance imaging. Magn Reson Med, 1998. 40: p. 740-748.
63.Beaulieu, C. and Allen, P.S., Determinants of anisotropic water diffusion in nerves. Magn Reson Med, 1994. 31(4): p. 394-400.
64.Makris, N., et al., Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann Neurol, 1997. 42(6): p. 951-62.
65.Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., and Henriquez, C.S., Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol, 1998. 274(5 Pt 2): p. H1627-34.
66.Scollan, D.F., Holmes, A., Winslow, R., and Forder, J., Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol, 1998. 275(6 Pt 2): p. H2308-18.
67.Holmes, A.A., Scollan, D.F., and Winslow, R.L., Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn Reson Med, 2000. 44(1): p. 157-61.
68.Dias, M.H., Gaggelli, E., and Lauterbur, P.C., Paramagnetic contrast agents in nuclear magnetic resonance medical imaging. Semin. Nucl. Med., 1983. 13: p. 364-376.
69.Kang, Y.S. and Gore, J.C., Studies of tissue NMR relaxation enhancement by manganese. Dose and time dependences. Investigative Radiology, 1984. 19(5): p. 399-407.
70.Drapeau, P. and Nachshen, D.A., Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J. Physiol., 1984. 348: p. 493-510.
71.Verity, M.A., Manganese neurotoxicity: a mechanistic hypothesis. Neurotoxicology, 1999. 20(2-3): p. 489-497.
72.Aschner, M., Vrana, K.E., and Zheng, W., Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology, 1999. 20(2-3): p. 173-180.
73.Basser, P.J. and Pierpaoli, C., A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med, 1998. 39(6): p. 928-34.
74.Axer, H., Berks, G., and Keyserlingk, D.G., Visualization of nerve fiber orientation in gross histological sections of the human brain. Microsc Res Tech, 2000. 51(5): p. 481-92.
75.Tseng, W.Y.I., Reese, T.G., Smith, R.N., Halprin, E., and Wedeen, V.J. Histological Correlation of Myocardial Diffusion Tensor MRI: Fibers and Sheets Both Contribute. in Proceedings of ISMRM 8th Ann Meeting. 1999. Peiladelphia, USA. p. 26.
76.Lin, C.P., Tseng, W.Y., Cheng, H.C., and Chen, J.H., Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage, 2001. 14(5): p. 1035-47.
77.Mattiello, J., Basser, P.J., and Le Bihan, D., b factor: analytical calculation of the b matrix in diffusion imaging. Diffusion and perfusion magnetic resonance imaging: applications to functional MRI, ed. D. Le Bihan. Vol. Chapter 5: Part II. 1995, New York: Raven Press, Ltd. 77-90.
78.Wiegell, M.R., Reese, T., Tuch, D.S., Sorensen, A.G., and Wedeen, V.J. Diffusion Spectrum Imaging Of Fiber White Matter Degeneration. in Proceeding of ISMRM. 2001. England. p. 504.
79.Jones, D.H., Williams, S.C., and Horsfield, M.A. Full representation of white-matter fibre direction on one map via diffusion tensor analysis. in Proceedings of ISMRM. 1997. p. 1743.
80.Paxinos, G., Kus, L., Ashwell, K.W.S., and Watson, C., Chemoarchitectonic atlas of the rat forebrain. 1999: Academic Press.
81.Alsop, D.C., Phase insensitive preparation of single-shot RARE: application to diffusion imaging in humans. Magn Reson Med, 1997. 38(4): p. 527-33.
82.Sodickson, D.K. and Manning, W.J., Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med, 1997. 38(4): p. 591-603.
83.Pruessmann, K.P., Weiger, M., Scheidegger, M.B., and Boesiger, P., SENSE: sensitivity encoding for fast MRI. Magn Reson Med, 1999. 42(5): p. 952-62.
84.Peled, S. and Yeshurun, Y., Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med, 2001. 45(1): p. 29-35.
85.Gerth, A., Hatalski, C., Avishai-Eliner, S., and Baram, T.Z., Corticotropin releasing hormone antagonist does not prevent adrenalectomy-induced apoptosis in the dentate gyrus of the rat hippocampus. Stress, 1998. 2(3): p. 159-69.
86.Lin, Y.K., Yao, C., and Chen, J.H. Automatic Effy Current Compensation in Echo Planar Imaging. in Proc ISMRM 10th Ann Meeting. 2002. Hawaii, USA. Submitted
87.Chuang, K.H. and Chen, J.H., IMPACT: Image-Based Physiological Artifacts Estimation and Correction Technique for Functional MRI. Magnetic Resonance in Medicine, 2001. 46: p. 344-353.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔