(3.237.178.91) 您好!臺灣時間:2021/03/02 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱祚宇
研究生(外文):Tso-Yu Chu
論文名稱:(氮)砷化銦材料能隙寬之研究
論文名稱(外文):Study on The Band Gap of InAs(N) Alloys
指導教授:林浩雄林浩雄引用關係
指導教授(外文):Hao-Shiung Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:71
中文關鍵詞:氮砷化銦能隙
外文關鍵詞:InAsNband gap
相關次數:
  • 被引用被引用:0
  • 點閱點閱:401
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中我們利用一個近幾年發表的「能帶反交叉模型」(band anticrossing model)來研究(氮)砷化銦(InAs(N))塊材的能隙以及(氮)砷化銦/砷化銦鎵量子井(InAs(N)/InGaAs quantum well)的發光能量。樣品皆為用氣態源分子束磊晶方法成長於半絕緣(001)指向的磷化銦(InP)基版上。除了能帶反交叉模型之外,由高載子濃度所引起的「伯斯坦-摩斯效應」(Burstein-Moss effect)以及「能隙縮減」(band gap renormalization or band gap narrowing),應力(strain)的影響和量子侷限效應(quantum confinement effect)也都列入考慮。樣品的光特性是由光激螢光譜(photoluminescence spectrum)以及吸收光譜(absorption spectrum)的量測所得,而樣品的電性乃藉由「霍爾效應」(Hall effect)的量測來得到。
在(氮)砷化銦塊材能隙寬的研就方面,我們在量測一系列(氮)砷化銦樣品的光激螢光譜及吸收光譜後發現,吸收邊緣處的能量以及光激螢光譜的峰值能量都不遵守「能帶彎曲」的理論,也就是氮砷化銦的能隙寬必須隨著氮含量的增加而減少。但是在我們將Burstein-Moss效應以及能隙縮減效應考慮進去後,所得到的傳導帶能量E-回歸到遵守能帶彎曲理論。經過計算後所得的結果為氮砷化銦每增加1%的氮含量,則其能隙減少的量為23.2meV,此結果與經由「緊密束縛法」(tight binding method)所計算出的結果,在氮含量少的區域頗為接近。同時,經由比較後我們也發現,樣品的光激螢光譜之所以如此的寬,乃由樣品中所含的高載子濃度所造成。
在(氮)砷化銦/砷化銦鎵放光能量的研就方面,塊材研究中所得到能帶反交叉模型的參數(EN及CNM)直接被應用在能量的計算上。計算中同時考慮了因氮砷化銦與砷化銦鎵晶格常數不同造成的應力效應和量子井中的量子侷限效應,計算結果發現與光激螢光譜上峰值的能量位置相當吻合,這說明了能帶反交叉模型可以合理預測含氮成分較少的氮砷化銦的能隙寬。而所得的能量對氮成分的關係圖顯示每增加1%的氮含量,(氮)砷化銦/砷化銦鎵量子井的發光能量約減少19.4meV,此結果比塊材方面的結果稍微減小,乃因量子井的侷限效應造成含氮成分較高的量子井有較高的侷限能態,使得氮成分的改變對發光能量的影響趨於緩和。

In this thesis the band gaps of InAsN alloys and transition energies of InAs(N)/InGaAs quantum wells are investigated by a recently reported band anticrossing model. The InAs(N) bulks and InAs(N)/InGaAs quantum wells are grown on semi-insulated (001) InP substrates by gas source molecular beam epitaxy. In addition to the band anticrossing model, the high-residual-carrier caused Burstein-Moss effect and band gap renormalization, the strain effect, and the quantum confined in quantum wells are also considered. The optical properties of the experimental samples are characterized by absorption and photoluminescence measurements, and the electrical properties are characterized by Hall effect measurement.
To study the band gap reduction of InAsN, absorption and photoluminescence of a series of InAs(N) samples are firstly measured. The experimental results do not obey the general believed band gap bowing effect, however, after we take the Burstein-Moss effect and band gap renormalization effect into account, the calculated conduction subbands E- re-show bowing effect. The calculated band gap reduction of InAsN with the increase of nitrogen composition is 23.2 meV per percent of nitrogen composition. We also find that the broad linewidths of PL spectra of the InAs(N) bulks are caused by the high residual carrier concentrations.
To study the band gap reduction of InAsN/InGaAs quantum wells, the obtained parameters of band anticrossing model are used to calculate the transition energies of the InAs(N)/InGaAs quantum wells. The well matched results of calculation with the measured photoluminescence peak positions indicated that the band anticrossing model can well predict the band gap of InAsN or the transition energy of InAsN/InGaAs quantum wells. The calculated transition energy reduction of InAsN/InGaAs quantum wells with the increase of nitrogen incorporation in the well layer is 19.4meV per percent of nitrogen composition.

中文摘要 I
Abstract III
Content V
Chapter 1 Introduction 1
Chapter 2 Theory 5
2-1 Band Anticrossing Model 5
2-2 Absorption and Burstein-Moss Effect 8
2-3 Band Gap Renormalization 11
2-4 Strain Effect 12
2-5 Quantum Confinement Effect and Kane-model-deduced
Effective Mass 14
Chapter 3 Experiments 24
3-1 Sample Growth and Sample Structures 24
3-2 Photoluminescence Measurements 25
3-3 Hall Effect Measurements 27
Chapter 4 Calculations, Results, and Discussion 33
4-1 InAs(N) Bulks Grown on InP Substrates 33
4-1-1 Experimental Results 33
4-1-2 Calculation Method Based on Band Anticrossing Model 35
4-1-3 Calculation Results Compared with Calculation Results 38
4-2 InAs(N)/InGaAs Quantum Wells Grown on InP Substrates 40
4-2-1 Experimental Results 40
4-2-2 Calculations Based on Band Anticrossing Model 41
4-2-3 Comparisons and Discussion 44
Chapter 5 Conclusion 66
Reference 68

[1] Tao Yang, Sadanojo Nakajima, and Shiro Sakai, “Tight-Binding Calculation of Electronic Structures of InNAs Ordered Alloys,” Jpn. J. Appl. Phys., vol. 36, L320, Part 2 (1997).
[2] Masahiko Kondow, Takeshi Kitatani, Shin’ichi Nakatsuka, Michael C. Larson, Kouji Nakahara, Yoshiaki Yazawa, Makoto Okai, and Kazuhisa Uomi, “GaInNAs : A Novel Material for Long-Wavelength Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 3, pp.719 (1997).
[3] S. Sakai, Y. Ueta, and Y. Terauchi, “Band gap energy and band lineup of III-V alloy semiconductors incorporating nitrogen and boron,” Jpn. J. Appl. Phys., vol. 32, pp. 4413, 1993.
[4] S.-H. Wei and A. Zunger, “Giant and composition-dependent optical bowing coefficient in GaAsN alloys,” Phys. Rev. Lett., vol. 76, pp. 664, 1996.
[5] L. Bellaiche, S.-H. Wei, and A. Zunger, “Localization and percolation in semiconductor alloys: GaAsN vs GaAsP,” Phys. Rev. B, vol. 54, pp. 17568, 1996.
[6] W. Shan, W. Walukiewicz J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett., vol. 82, pp. 1221, 1999.
[7] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Effect of nitrogen on the band structure of GaInNAs alloys,” J. Appl. Phys., vol. 86, pp. 2349, 1999.
[8] M. Kondow, K. Uomi, K. Hosomi, and T. Mozume, “Gas-source molecular beam epitaxy of GaNxAs1-x using a N radical as the N source,” Jpn. J. Appl. Phys., vol. 33, pp. L1056, 1994.
[9] M. Kondow, K. Uomi, T. Kitatani, S. Watahiki, and Y. Yazawa, “Extremely large N content (up to 10 %) in GaNAs grown by gas-source molecular beam epitaxy,” J. Cryst. Growth, vol. 164, pp. 175, 1996.
[10] W. G. Bi and C. W. Tu, “Bowing parameter of the band-gap energy of GaNxAs1-x,” Appl. Phys. Lett., vol. 70, pp. 1608, 1997.
[11] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long-wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys., vol. 35, pp. 1273, 1996.
[12] Z. Pan, T. Miyamoto, D. Schlenker, S. Sato, F. Koyama, and K. Iga, “Low temperature growth of GaInNAs/GaAs quantum well by metalorganic chemical vapor deposition using tertiarybutylarsine,” J. Appl. Phys., vol. 84, pp. 6409, 1998.
[13] M. R. Gokhale, J. Wei, H. Wang, and S. R. Forrest, “Growth and characterization of small band gap (~0.6 eV) InGaAsN layers on InP,” Appl. Phys. Lett., vol. 74, pp. 1287, 1999.
[14] H. Naoi, Y. Naoi, and S. Sakai, “MOCVD growth of InAsN for infrared applications,” Solid-State Electronics. vol. 41, pp. 319, 1997.
[15] Jyh-Shyang Wang, and Hao-Hsiung Lin, “Growth and postgrowth rapid thermal annealing of InAsN/InGaAs single quantum well on InP grown by gas source molecular beam epitaxy,” J. Vac. Sci. Technol. B, vol. 77, pp. 1997, 1999.
[16] Guan-Ru Chen, Hao-Hsiung Lin, Jyh-Shyang Wang, and Ding-Kang Shih, “Optical properties of as-grown and annealed InAs(N)/InGaAsP strained multiple quantum wells,” J. Appl. Phys. vol. 90, pp. 6230, 2001
[17] I-hsiu Ho and G. B. Stringfellow, “Solubility of nitrogen in binary III-V systems,” J. Cryst. Growth, vol. 178, pp. 1, 1997.
[18] Ding-Kang Shih, Hao-Hsiung Lin, and Y. H. Lin, “InAs0.97N0.03/InGaAs/InP multiple quantum well lasers with emission wavelength 2.38um,” Electron. Lett. vol. 37, pp. 1342, 2001.
[19] Nacir Tit, and M. W. C. Dharma-Wardana, “Electronic structure of InNxAs1-x alloys from tight-binding calculations,” Appl. Phys. Lett. vol. 76, pp. 3576, 2000.
[20] W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, and J. F. Geisz, “Band anticrossing in III-N-V alloys,” Phys. Stat. Sol. (b) vol. 223, pp. 75 ,2001.
[21] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett. vol. 82, pp. 1221, 1999.
[22] C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, and T. Suski, W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, J. F. Geisz, and J. M. Olson, “Large, nitrogen-induced increase of the electron effective mass in InyGa1-yNxAs1-x,” Appl. Phys. Lett. vol. 76, pp. 2409, 2000.
[23] H. P. Hjalmarson, P. Vogl, D. J. Wolford, and J. D. Dow, “Theory of substitutional deep traps in covalent semiconductors,” Phys. Rev. Lett. vol. 44, pp. 810, 1980.
[24] Shun-ichi Gonda, Yunosuke Makita, Seiji Mukai, Toshio Tsurushima, and Hisao Tanoue, Appl. Phys. Lett. vol. 29, pp. 196, 1976.
[25] Jacques I. Pankove, Optical Processes in Semiconductors, (Dover Publications, Inc. 1975)
[26] V. Swaminathan, Materials Aspects of GaAs and InP Based Structures, (Prentice Hall, Englewood Cliffs, New Jersey, 1991)
[27] M. Bugajski and W. Lewandowski, “Concentration-dependent absorption and photoluminescence of n-type InP,” J. Appl. Phys. Vol. 57, pp. 521, 1985.
[28] S. C. Jain, J. M. McGregor, and D. J. Roulston, “Band gap narrowing in novel III-V semiconductors,” J. Appl. Phys. Vol. 68, pp. 3747, 1990.
[29] Paul W. Juodawlkis and Stephen E. Ralph, “Hole-induced transient band gap renormalization: A mechanism for photo-induced absorption in defect-engineered semiconductors,” Appl. Phys. Lett. vol. 76, pp. 1722, 2000.
[30] Jasprit Singh, Semiconductor Optoelectronics, (McGraw-Hill International Editions, 1995)
[31] Larry A. Coldren and Scott W. Corzine, Diode Lasers and Photonic Integrated Circuits, (John wiley & Sons, Inc. 1995)
[32] G. Ji, D. Huang, U. K. Reddy, T. S. Henderson, R. Houdre, and H. Morkoc, “Optical investigation of highly strained InGaAs-GaAs multiple quantum wells,” J. Appl. Phys. Vol. 62, pp. 3366, 1987.
[33] Shung Lien Chuang, Physics of Optoelectronic Devices, (John wiley & Sons, Inc. 1995)
[34] Carlo Sirtori, Federico Capasso, and Jérôme Faist, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B vol. 50, pp. 8663 1994.
[35] L. J. van der PAUW, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Repts vol. 13, pp. 1, 1958.
[36] Ying-Chao Ruan and W. Y. Ching, “An effective dipole theory for band lineups in semiconductor heterojunctions” J. Appl. Phys. vol. 62, pp. 2885, 1987.
[37] J. Stiens and R. Vounckx, “Calculations of plasma wavelength in highly doped III-V semiconductor alloys,” J. Appl. Phys. Vol. 76, pp. 3526, 1994.
[38] Charles Kittel, Introduction to Solid State Physics, (John wiley & Sons, Inc. 1996)
[39] B. K. Meyer, D. Volm, A. Craber, H. C. Alt, T. Detchprohm, A. Amano and I. Akasaki, “Shallow donors in GaN---The biding energy and the electron effective mass,” Solid State Communications, vol. 95, pp. 597, 1995.
[40] D. C. Reynolds, D. C. Look, and B. Jogai, “Combined effects of screening and band gap renormalization on the energy of optical transitions in ZnO and GaN,” J. Appl. Phys. Vol. 88, pp. 5760, 2000.
[41] Donald A. Neamen, Semiconductor Physics and Devices, (IRWIN, Inc. 1992).
[42] M. Yoshikawa, M. Kunzer, J. Wagner, H, Obloh, P. Schlotter, R. Schmidt, N. Herres, and U. Kaufmann, “Band-gap renormalization and band filling in Si-doped GaN films studied by photoluminescence spectroscopy,” J. Appl. Phys. Vol. 86, pp. 4400, 1999.
[43] Eric Tournie, Patrick Grunberg, Catherine Fouillant, Alexei Baranov, Andre Joullie and Klaus H. Ploog, “Strained InAs/Ga0.47In0.53As quantum-well heterostructures grown by molecular-beam epitaxy for long-wavelength laser applications,” Solid-State Electronics vol. 37, pp. 1311, 1994.
[44] Eric Tournie, Hans-Peter Schonherr, and Klaus Ploog, “Strained InAs single quantum wells embedded in a Ga0.47In0.53As matrix,” Appl. Phys. Lett. vol. 61, pp. 846, 1992.
[45] Eric Tournié, Oliver Brandt, and Klaus Ploog, “Photoluminescence of virtual-surfactant grown InAs/Al0.48In0.52As single quantum wells,” Appl. Phys. Lett. vol. 60, pp. 2877, 1992.
[46] J.-H. Huang, T. Y. Chang, and B. Lalevic, “Measurement of the conduction-band discontinuity in pseudomorphic InxGa1—xAs/In0.52Al0.48As heterostructures,” Appl. Phys. Lett. vol. 60, pp. 733, 1992.
[47] D. A. Kleinman and R. C. Miller, “Band-gap renormalization in semiconductor quantum wells containing carriers,” Phys. Rev. B, vol. 32, pp. 2266, 1985.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 黃源協(2002)。從社會政策到社會工作:社會福利體系的挑戰與回應,社區發展季刊,89,頁22-39。
2. 古允文(2001b)。平等與凝聚:台灣社會福利發展的思考,社會政策與社會工作學刊5(1),頁145-169。
3. 黃偉峰(2002)。左派、右派、或第三條路?英國主要政黨意識型態之區隔,1979-1997,理論與政策,16(1),頁1-25。
4. 傅立葉(1995)。社會福利的發展趨勢,社區發展季刊,70,頁116-129。
5. 郭銀漢(2002)。Poplarism抗爭模式:1920年代英國中央與地方政府社會救助角色之轉變,社會發展研究學刊,4,頁59-72。
6. 翁瑞廷(1984)。英國工黨的危機及未來展望,問題與研究,23(6),頁55-67。
7. 張世雄(2001)。西方社會福利思想的四個傳承:當代社會救助政策思想脈絡的探索,社會政策與社會工作學刊5(1),頁99-144。
8. 吳育仁(2000)。勞動關係新思維:英國第三條路的政治經濟哲學,理論與政策,14(4),頁91-112。
9. 王篤強(2002)。美國九0年代「福利改革」對臺灣的可能啟示,社區發展季刊,98,頁183-194。
10. 翁毓秀(2002)。臺灣地區兒童與家庭救助政策:從美國社會福利改革談起,社區發展季刊,98,頁145-160。
11. 孫健忠(1996)。英國社會救助政策發展之探討,公共政策學報,17,頁137-163。
12. 呂建德(2001)。從福利國家到競爭式國家?:全球化與福利國家的危機,臺灣社會學,2,頁263-313。
13. 王篤強(1998)。美國八0年代「低賤階級(underclass)」問題的再思考,經社法制論叢,21,頁445-469。
14. 王仕圖(1998)。美國柯林頓政府的「AFDC依賴兒童家庭補助」改革對我國貧童救助政策的啟示,社區發展季刊,81期,頁206-212。
15. 王文瑛(2001)。天主教的社會救助政策,社區發展季刊,95,頁133-142。
 
系統版面圖檔 系統版面圖檔